Fuzible - General Documentation

Author Guillaume Tristant

CREATION 20171002

REVIEW 20221227

Resources www.fuzible-app.com

SUPPORT MAIL guillaume@fuzible-app.com

Forum www.fuzible-app.com/wordpress/fuzibleForum/phpBB3/
Language FR/EN

Table of Content

PrEAMIDIE ...t b e s h e ettt e bt e bt sa e e a bt e bt e bt e bt e b e sh et e R et et e e bt e eheeeheesaeeeare e bt e beennees 5
Information about dOCUMENTAtION ...cc.iiiiiii ettt st st st s sb e beennees 5
o T ol o [PPSR 6
Ta13 11 14 Te] o H O OO ST TP O OO P PP POPOTOTRRRTPPPTON 6
(2U<Tolo] 0 a1 a g Y=l o o [<Te Mole oV i TV T =Y i o] o PSSR 6
I T = = PP PPPPPPPRE 6
O T T T I o T =11 o Yo PR 6
INSTallation fOr an INAIVIAUANc...eiie ettt ettt e s sbt e e s it e e s bbe e sabeeebbeesabeesneeesareesanes 6
SOTEWAIE ATCRITECTUIE ... ittt ettt e e bt e e s bt e e bt e e s abe e s beeesabeesabeesabbeesabaeesbeesabeesnbeesabaeeneeas 7
N o] AN Tl U= A I A 1 d Lo PP 8
(Lol =T = =T T o 1= = TSP PP 9
oY LY I U o = = Yo SRR 9
Program COMPAtIDIlITYeeiieiiiei ettt e e e et e e e e e tte e e e ebteeeeebeseeeeseaeasanstssaeanssasaeastaeasassanassnssanananns 10
U] o] oo a Yo B Yol=T o T-1 5[1- 3PP PP 10
Y=o 0) 2T O PPPPPTPRPT 11
HOW it WOTKS, STAIT-UD .uvtiiiiiiiiiiiiiiee s ceitee e sett e ettt e e e et e e s et e e e e s ebteeeesabeeeeesasteeaeaaseaeessnseaeesansteeesanseaeessnsaaeessassneessnssneessnns 11
STArt the Program in UL MOGE. ... ettt e e e et e e e e e bt e e e e ebteeeeebteeaeebtaeeesstaeeeeastasaesassanaesastanansnns 11
Start the program in "CONSOLE" mode (silent execution of @ JOD).......cccuiieiiiiiiiicciee e 11
FIESE LAUNCH .ttt b e s h e e ae e et e e bt e eb e e she e s ae e s at e et e e be e bt e ab e e eaeeeabeenbeenbeesbeesaeesanenane 11
LAV T o 4 g =4 2= o o ST 11
INTEErated SOTtWAIE SUPPOIT .. ci ittt et e e et e e e st te e e e s bteeeesbeaeeeasstaeesansteeeeansaaeesansaeeesaseneesanssneessnns 12
LT aToY g1 A= A (oY o T o] « LR 12
(@ U] Lol Q2 1= o T8 21U oY o USRS 13
TUBOTIALS ettt et st e s bt e s i et e s bt e e sa bt e s b e e e s e e e sabeeesaseesabe e e beeesaneeesabeesareeeaneeesarenennneea 13
QUENY ASSISTANT ., 14
L0 Lo T T=IN oT= [« T PRSPPI 14
Yo 8T TSR Y = T Y=L PP PPP 15
L0To T] o= Tot { o o |- PSP PPRROPPPRO 15

(DY =] o 1= LY =S ETUTN 17

http://www.fuzible-app.com/
http://www.fuzible-app.com/wordpress/fuzibleForum/phpBB3/

L] T O TSP PRSPPSO PTOPPTOPRRRPRRPOON 20
WV EDSEIVICE REST ...ttt ettt ettt ettt et e s bt e s ab e e s bt e s bee e sttt e bt e e sateesabeeesabeesabeeeneeesabeeesnseesabeesanteesabeeenneeas 21
Y Y| PR URI 23
FANo R AVl B [Tol o] o VOO PP PSPPI PPTTPPPPTROt 24
o = PP PPPPPPPPPPPRE 25
Y 5 I N o= 1 Y721 SRR 26
1] O | TSP PSSP PPTOPRRRPSROPRPOON 27
PSPPSR 28
L Y PSPPI 29
W DISEIVICES ...ttt ettt ettt ettt e s ettt e st e sttt e s a b e e s bee e ae e e s abe e e aab e e s abe e e st e e s abee e sbeesabeesabe e e s be e e beeesaseesneeesareeeanes 30
S VICE/ ClIBNT AP . cereeetie ettt etee ettt et e ettt e e eteeeeteeeebeeeeteeestbeeebeeeabeeesabeseatseeessesensesesabasensaeeasseesnbasessseeentesesseesseeeseeas 31
DBV ettt e et e e st e et e e s e e e e e s b e e e s e bt e e s e e e s e b e e e s e e e e s s nnres 32
Lo Lo] O O O T O T T T O T O PSP U PP OTUUPTOPOTOTOPPTRPPONt 34
g e Yo Yol o] o XX 4.V | USRS 34
T g ool oY o 0,41, TSRS 34
UTo T == a1 J0 L] o - PR 34
IMOVE @S SUD =JOD .ttt b e sttt bt e s bt e s bt e saeesab e et e et e e beeeneeeateeaneereens 34
MOVE @S IMIN JOD .ttt b et she e et e e bt e s b e e s bt e saeesat e et e eabe e beesmeesateeaseenteens 34
IMIOVE DOWN/UP .. iiiiiieieeetiectie et et e et esteestee st e eabeebeesteestsesabeeabeeabeeba e saeasaessseesbeenseessasssasasesabesnbeenseesssessseenseensensanns 35
IMPOrt EXLErNal JOD ParamEtersci i ciiiiiciiee ettt e e et e e e s e e e st e e e e s ateeeessbeeesesbeeeeessbeaeeasnseeessnssens 35
Load another USerspace (Fa0-0NIY)c..ioiiieiiiie i cciee et ste e ertte e ste e eetee e st e e e tteesbeeetae e steessaeesssessnsaeessseesseeensseenns 36
N Lo] o X G4 =T d o] o OO OO O TT T OUTR U UTUPRUPRUPRRPPRN 37
o] N @eT o) iT={U T 4 To] o 15 =1 o F TR 37
o] o T Y/ o 1T USRIt 38
[T= U T oI of] o) SF OO PP PTPPPPPTN 40
o] o ISY U121 1 F= 1 V7S USRI 41
(0] ol o1 A - | o o TSP U U P R OUTOPPTOPRRPRRRPRRPION 41

[Y] 11T = =] [=Y o Vo - USRS 43
Yo LUl o< = PP UPTOTRR TR 44
B D DD e 45
IMIONGODB ...ttt sttt et et e s bt e s bt e st e st e bt e bt e e bt e sh et e et e et e e b e e sbeesseesanesabeeabe e seeameeemeeenneenreens 45
(O {1 =TT P ST PPTOPRRTRRRPRPION 45
EXCRI FI18 ettt h e bt h ettt b e e bt e bt e eh et et e e te e bt e eheeehee e bt e beebe e bt e eneeenteeteeteen 46
XIMIL @N0 JSON FIlES .ttt ettt ettt s et s e bt e e s bt e bt e e s et e e sabe e e sabeesabeeeneeesabeeeneeesnseesaneeesareesnneeas 46
W EDSEIVICE REST ...ttt ettt sttt sttt e st esa bt e st e e e bt e e s b et e be e e sateesabeeesabeesabeeeaneeesareeeneeesmseesaneeesareesneeas 46

Y 11 oo G PSP PP ORI PPTOPROTRRRPRRPION 47

B L I AN QT V72T oSSR 47

Data TranSTOrMIATIONeeiiei ettt sttt st e bt e b e e s be e s et e st e et e e bt e b e e reeeaeeeareereens 49
PrE/POSt-JOD COMMEANGS....cciiotiiiiiiiiiie ettt ettt ettt e e ettt e e s bttt e e s eaabeeessabaeeesabbaeeesasbaseesabbseessasbbeesssbaeessnbaeeesanbaseess 52
(W o] o L=Te I =T fo] o J @] 4o oo - [oo L3S SRR 53
LI L= 71 « PP 55
CommMON SEEHINGS 10 @l LArZEES . eiiiiiiiii e e e et e e e s e e e e b e e e e etteeeseabaeeeenabaeeeennreeeeennsens 55
DAtADASE ..ttt b e bt s b et sh et et e e Rt e bt e e bt e sheeea bt e bt e bt e beeeneeeneeeaneereen 56
(O {1 =TT OSSOSO PTO TP PPTOPRRRTRRRPRRPION 57
ol <] I 71 =S T PP VPP PR TOVRTTOUPPTRPRO 57
1T SRR 57
1T T L SRR 58
WEDSEIVICE REST/INUXED ..oeieiiiiiieeeieieeeeeeeeeeeeet ettt e e seeesaaeeteessessassssseteeesssssasssssaeeeesssesassssateeesssssanssssaeeeesssssassrsseeees 61
Y 11 oo G T O OO TP UIO PO PROTRRRURRRPION 62
FAYo AVl B[Tol o] o VOO PP PPTOPPPPPPROt 62
QUUETIES 1AD ettt ettt e s e s bt e s ab e s ab e e s be e e s bt e e bt e e sab e e e bt e e sabe e e bee e nbeesbaeesabeeebeeenbeesbaeenreas 63
DU PUL e aeaaaaaaaaaaaaaeaaens 64
HOW field MAPPING WOTKS .ottt e e e et e e e ettt e e e eeataeeeeasaeeesasaeeeeasseeesansseeeeassseeesansseeesanssneens 64
Special cases of SYNChIroNIZatioN QUETIES:ccccuiii i e e tee e et ee e e e e e e eeabee e e eeareeeeennrees 65
SELECT - From a database, 10 @ databaseoeveviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee ettt ettt et e eeeeeeeeeeeeeeeseeeeeseseeesesssseeeenans 67
SELECT - From @ database, 10 @ filE ...uuueeiii ittt e ettt e e e e e e et a b e e e e e e e e e e aatrabeeeeeeeeennnsraseens 67
SELECT - From a database, t0 an €mMa@il GUAIESSevvvviviiiiiiiiiiiiiiiiieieiieeeeeeeeteeeeeeeeeeeeeeeeeeeeeseseseessesesssssssssssessssserenans 67
SELECT - FrOM @ fil@ ettt ettt st st sttt e bt e s b e e s e e sanesneean e e reennees 68
SELECT - From a webservice using FUZIDIE SQL (A)uueeeiiciiiee e eeeee ettt eette e e ette e e evre e e e svae e e e eabae e e e eareeeeennnees 68
SELECT - From a webservice using FUZIbIe SQL (B)ueeeieiiiieeieiiee e eetee ettt et e e evte e e e evae e e e ebae e e e eareee e eennes 69
SELECT — From Salesforce APl USING SOSQL.......ccuiiiiiiiiieeeeiiieeeeeiieeeeeite e e eetee e e eetaeeeesbaeeeesaseeeeesabaeeeennsaseeennseneasansens 69
SELECT - FrOm @n @-Mail DOX...cooueiiiiiiiieiieieeesite ettt ettt s s s e re e bt s e sanesane s bt e ene e reesnees 70
SELECT - FrOmM ACEIVE DIl@CEOIY . cciiiiiiieieiie ittt ettt e e e s s sttt et e e e e s e sbabaeeee e s s s s ssbsbaaeeesssssssssseaaeeessssssssssenens 70
SELECT MUILi-tables, MUITISTIIES ..vevvveiiiiiiiiiiiiiiiiiiieeeieeeeeeeeee ettt ettt e e eeae e eeeeeseeeeeseassesbsssssssassaesssanesssnnenens 73
Y UL R =T ==l @ LU 1= TSRS 73
L0 o LT O LU 1= TSRO P PO PPR 75
(@0 g T LD U= I O T 1T 20 1 =T T USRS 83
QUERY ANALYZER = NEWS SOUFCE......uviiiiiiiiiiiiiiiieiiiiiic ittt a s s a s s s saba e e s saba e e s sabaeessnras 84
QUERY ANALYZER - Target INTO..ceueiiiieiiite ettt sttt ettt st st st st e b e s e e smeesmteeneereens 85
QUERY ANALYZER - VIEW DAt ...ceeeeiiiiiiiieiiiittiee ettt e e e e ettt e e e e e s s ettt e e e e e e e s nnbbeteeeee e e nnrtbeeeeeeesannnsneeeeaeeanns 86
QUERY ANALYZER - QUETY DETAIIS...ccuvieiteeiteesiieciecie et eieeteesteesteesteestaessteesteesteestaessaesseesnseenseesseessessssesssesnsesssesnsanns 87
EXECUTE QUERY - Run this individual QUETYuuiiiiieee ettt e e ettt e e e e e e e snbaee e e e e e e s e snnseaeeeeaessenannns 89
SYNCHRO-QUERY - Transcoded fOr TArZEL ...uiiiiiiiiiiciiee e ccitie ettt e et e e e tre e e e stee e e e sabae e e esabaee e ennreeeeennees 89

SYNCHRO-QUERY - Validity check for SYNChIro QUETY..........uuiiiiiieicciee ettt e e evae e s e svae e e e sva e e e e 89

SCRIPTING - Get Full Header QUery and COPY/Past it......ccieieeeireeirieerieireesieeiteeceeereeereesreesteeetreeveeveenbeesseessnenanas 89

SCRIPTING - TransfOormations.......coueeiieiiieietieite ettt ettt sbe e st st e et e e sbeesaeesanesanesbeeabeenneennees 90
SCRIPTING - Add @ DYNamiC ParamEter......uuui ittt ettt e e e see e e st e e e st e e s e sabee e e ssnbeeeessaseeeesnsens 91
SCRIPTING - BaSiC QUEIY BUIIAET ...cci ettt sttt e e et e e e st e e e s sabee e s esabee e e snabeeeesnnseeeesnrens 92
ADVANCED QUERY SCRIPTING - Add Cross-ConNECtioNS JOIN ...c..eiirieeriiieeiiieniee et eieeesreeeiee e s e 92
ADVANCED QUERY SCRIPTING - Create DUAI TArBELteivvuieirieeiieeeiieesiee ettt esieeesiveeste s sseeeesaveeesaaeesatessnnessavessnnes 92

(oY 1YY T o - o T PP 93
(2 {UT oY o1 o =3 T o] « HS PP 94
BT Vol Y o o] [Tt 1 4 T o NP SRR 96
Setting Up the WIndOwWSs Task IMIANAGETcuiiiiiiii ittt sttt e e et e e s s bee e e s sbteeessbteeeesntaeessnssaeassans 96
Setting up an external job (excluding Fuzible) with the "Service" app.....ccccccceeeiiie e 98
RO 1= o) Y o o] 1 Tor=1 o o RS 99
U1 o] LI O LI] 1o 1YY= VPR 103
U] o] oo g 4T I 18T s Vot 4] o -3 USRI 103

O 1T o o To] =T c SRR 103

Preamble

First, | would like to thank you warmly for using (or trying) Fuzible. This software is the culmination of
several years of work, and the observation that many tasks related to data manipulation are too often time-
consuming and redundant.

There are many alternatives, and the idea is not to create competition, but another way of designing data exchange
and manipulation.

The program is aimed at developers with minimal knowledge of the SQL language.

The philosophy of the program is simple:

Any Data Source is a database and can be queried as such!

Some use cases:

e Data replication (copy)

e Data synchronization (smart comparison of 2 sources)

e Interfaces (ex: retrieve data from one software's webservice in SaaS and send it to another software in the
form of XML files)

e Migration of data from one BDD to another (regardless of the driver)

e Fast data extraction (ex: SQL to CSV)

e Fast data importation (ex: EXCEL to BDD)

e Data comparison (ex: to control the integrity of 2 BDDs)

e Cross-join from different sources in real time

e Filling a data warehouse (ex:, integrating a file into a BDD is fully automated: from data analysis to table
creation)

e Sync a pre-production environment with a production environment

Information about documentation
The documentation was written in French and translated in English using an automatic translator. | checked
a few key things but | am sorry if there are still weird phrases!

Principle

Fuzible is a tool that allows you to import, export, mix, synchronize, replicate, compare data. The general
principle is based on the definition of a Data Source (which will be queried), and a Target (in which data will be
copied).

The tool can work with several SGBDs (see compatibility table), both for export and for data import. It offers an
opportunity to analyze all the data needed to create intelligent import fields (consistent types and lengths). But
beyond that, he can read and write in files, webservices, mailboxes, and in the Active Directory!

Finally, it is designed as modular, from data processing to LOG management and Jobs orchestration. A Swiss knife, in
short. It can meet the most basic needs (copying a CSV file in a database) to the most complex (synchronizing 2
database environments).

Installation
The program can be installed anywhere on the hard drive. You can choose to use the portable version or the
installer version. In both cases, no data will be written anywhere other than in the installation directory.

Recommended configuration
This assessment is based on my tests. Note that multithreading exponentially increases the needs of the
machine running the program. Setup indicated for 4 threads.

- Microsoft Windows OS (from Windows 7, or Server 2008r2 and more)

- 4th generation Intel I5 CPU with at least 2 execution threads

- 8GB of RAM (large minimum)

- HDD 7200tr/min with10GBavailable.

- Internet access

- Microsoft NetCore Framework v3.1 (https://dotnet.microsoft.com/download)

Language
The program is available in 2 languages (French, English). By default, it is set to use the system language, but
you can switch from one language to another in the "File" menu.

Enterprise installation

In a network environment, Fuzible is multi-user (and delivers all its possibilities when used like this), it is
advisable to install it on a server accessible in RDP. In addition, a server will often have much more access rights to
SQL instances, network paths, FTP... than a local computer.

Similarly, if you replicate from one BDD to another, and Fuzible is installed on a local computer, processing times
could be horribly slow because the data will have to be retrieved first from the Source server to the local computer
and then from it to the Target server. If you are behind a VPN, or if your connection to the network is slow,
performance will be extremely degraded.

Installation for an Individual

Just make sure that the computer on which you install the app accesses all the data sources you will handle
(SQL instances, local network, Active Directory domain, Internet connection...) and that the user account is
"administrator" of the computer.

(https:/dotnet.microsoft.com/download)

Software Architecture

The diagram shows the different bricks of the application. Some of them are optional and do not need to be
configured other than the application itself.

The Core application is in the Orange rectangle.

All dotted lines represent optional bricks. Green ones are included with Fuzible, and gray ones are external.

. |

]

ENTERPRISE NETWORK

Windows Server avec NetCore 3

O

Task Managor Fuzible e e e 5
‘Starts the Service on each minute Windows Service

- Chack If there's some Client Jobs to execute
- Starts Fuzible app to executo Jobs

powershell, cmd

Ll

Fuzible
Windows Light App.

- List of Jobs that can be trggered
- Add a Job to the Queue
- Add optional parameters to any Job
- Snow Job State

Software Registration

When starting the software, whether it was purchased or not, it runs in demonstration mode. It is limited in its use and
a message will inform you at each start.

Unregistered Version. Check ‘Help/How to Register’ to get informations about
Registration.

You will not be able to do the following:

- Orchestrating Jobs

- Importing and exporting Jobs

- Use the “Client” and “Service” app
- Create more than 3 Jobs

To Register Fuzible, just go to the Help menu:

g? SHS Fuzible Data Replicator, Synchronizer

File Configuration Tools

About

Browse the Website
GUIZM i
Documentation

@ Contact us
Sou Log Viewer

Job Description Enter License Key

Check for Updates

A menu opens and asks you to enter your email address to register.

;5;9 Registration System - m} X

Welcome to the Registration System.
Please fill the required fields and click 'Request Registration code’
The provided data will be sent to Fuzible server and be stored and processed
to sent you back a Registration Code.

Email address

Buy date ‘ ‘

Transaction number Free Version
License type AQ: 1 machine, 5 jobs, minor updates (FREE) v

Request registration code

If you purchased the program, you also need to choose the type of License you purchased from the drop-down list, and then
specify the transaction number that was provided to you at the time of purchase, as well as the date the License was purchased.

Note: Your information is only stored on Fuzible's server, the data is not transmitted under any circumstances to anyone.
Registering the free version allows us to measure the number of active users on the app.

The data sent is: email address, CPU model, amount of RAM, Windows version, version of the NetCore Framework, unique PC
identifiers (main hard drive, CPU), amount of Jobs in Fuzible, amount of connections, local IP address, public IP address, program
installation path, program version.

Click "Request Registration Code" to send your data to the Fuzible Server. Your registration request will be processed manually
within a few minutes, and a registration code will then be sent back to you by email.

This should be entered in the Help menu:

g? SHS Fuzible Data Replicator, Synchronizer

File Configuration Tools

About

Browse the Website
GUIZM i
Documentation

@ Contact us
Sou Log Viewer
How to Register —

Job Description

Check for Updates

| License Number : n

License Number :

MyLicenseNumbeﬂ

The code authenticity is checked locally, and a message will inform you of the validity of the code.

The free version gives you all the features of the app, but the number of Jobs that can be created is limited to 5. Paid
versions are built around the number of Jobs that can be created, as well as the type of updates that will be possible to
download in the future (corrective updates, minor, major developments).

License Perimeter

A Fuzible License is multi-user (several users on the same computer can use the app independently) but is limited to
the computer on which the application is installed. The following changes will cause the program to return to demo
mode:

- Changing the installation directory

- Change of CPU

- Change of hard drive

- Manual changes to the program's internal database

If a change in circumstances proves to be legitimate, you can request assistance on the website:

www.fuzible-app.com

License Upgrade
If you already own a License, and you just acquired a better one from our website, you can go to this menu
to update the software. The Registration process will be the same as the first time you did register the app.

Tutorials >
About

Browse the Website

Download DB Browser for SQLite
Documentation

@ Contact us

How to Reqgister

Enter License Key

http://www.fuzible-app.com/

Program compatibility

Support

SQL Server SOURCE: Full support
CIBLE: Total support
Mysql SOURCE: Full support
TARGET: Total support
Postgres SQL SOURCE: Full support
TARGET: Total support
Odbc SOURCE: Full support
TARGET: Partial support: Need you to set up some system queries
Oracle SOURCE: Full support
TARGET: Total support
Sqlite SOURCE: Full support
TARGET: Total support
Access SOURCE: Full support
TARGET: Total support
Mongodb SOURCE: Full support
TARGET: Total support
File SOURCE: Support XML, JSON, CSV, XLS, XLSX (FTP)

TARGET: Support XML, JSON, CSV, XLS, XLSX (FTP)

Webservices

SOURCE: API REST

TARGET: Partial support (REST, http)

Mailbox

SOURCE: POP, IMAP

TARGET: SMTP

ACTIVE DIRECTORY

SOURCE: users, groups

TARGET: users, groups

Supported Scenarios

Source Target REPLICATION SYNCHRONIZATION
Database Database Yes Yes
Database File Yes Yes
Database Webservice Yes No
Database Mailbox Yes No
Database Active Directory Yes Yes
File Database Yes Yes
File File Yes Yes
File Webservice Yes No
File Mailbox Yes No
File Active Directory Yes Yes
Webservice Database Yes Yes
Webservice File Yes Yes
Webservice Webservice Yes No
Webservice Mailbox Yes No
Webservice Active Directory Yes Yes
Mailbox Database Yes Yes
Mailbox File Yes Yes
Mailbox Webservice Yes No
Mailbox Mailbox Yes No
Mailbox Active Directory Yes Yes
Active Directory Database Yes Yes
Active Directory File Yes Yes
Active Directory Webservice Yes No
Active Directory Mailbox Yes No
Active Directory Active Directory Yes Yes

Security
The program uses an SQLite database to work. Several information is encrypted (AES), including login chains
and passwords, to protect data privacy for each user session.

How it works, start-up

Start the program in "UI" mode
Run Fuzible.exe

Start the program in "CONSOLE" mode (silent execution of a Job)
Run Fuzible.exe with arguments

1 - Userspace (basically, the user who is connected)
2- Job ID to run at start-up (if needed)
3 - Password(encrypted)
4 - Dynamic Parameters (see "Script Language" section)
Example:
Fuzible .exe "GUILLAUME" "[10]" Apza-7824
> Will launch the no.10 job of the user "GUILLAUME"

Given the austerity of entering arguments, the program proposes, in its Ul, to display you the "launcher" code of
each Job so that you can copy and paste it directly (in a scheduling tool for example).

In summary, the program has two operating modes:

- Insilent mode (name of job to be performed), it does not load the graphical interface and performs the Job
in the background.
- In Ul mode, it opens the graphical interface: it allows you to edit, add and launch Jobs

First launch
At the first launch of the program, it will create:

- Your default general configuration
- Two Demo Jobs containing about 20 test queries, to introduce you to the features.
- 3 local "file" connections, 1 SQLite connection, 1 connection to a demo webservice

You will also be notified that you are not registered, and because of that, you will not be able to create more than 3
Jobs. In addition, some features will be disabled.

Working Path

Fuzible stores its data into the « public » directory : C:\Users\Public\Documents\Fuzible.

This is where you get the internal Fuzible database, LOG files, the Client App binaries, and also demo files that are
used by the default Job File connections.

Integrated software support
Like any program, the first use can sometimes be off-putting. Fuzible is no exception to the rule, but before
closing the program permanently, let me show you how you can get some assistance.

Demonstration jobs
During the first launch, Fuzible will create 2 Demo Jobs for you that will help you understand how to query a
Source other than a database using the SQL language. Those are accessed through the selection menu:

GuIZM | v

[File -= File] L

Job Configuration + [11C8V -> XLS: This is a sample Job
[Webservice - - Database] i
Job Description [2] WEBSERVICE -= SQLITE : This is a sample Job

- Alob that copies data from CSV files into EXCEL (XLSX) files:

%3 SHS Fuzivle Data Replicator, Synchvonizer — - o X
File Configuration Tools Help

cuzm [11CSV -> XLS - This is a sampie Job v Create new Step
Job Configuration Source:CSVFile Target:Excelfile Queries Log Viewer

| _sob u Sandbox

Show me an exemple

SAMPLE_OUTPUT_SELECTALLXLSX:SELECT * FROM SAMPLE.CSV

SAMPLE_OUTPUT_SELECTBYFIELD.XLSX:SELECT id_sample AS FirstColumn, i_sample AS SecondColumn FROM SAMPLE.CSV
SAMPLE_OUTPUT_DISTINCT.XLSX:SELECT DISTINCT id_ssgroup AS DistinctSSGroup FROM SAMPLE.CSV
SAMPLE_OUTPUT_WHERE_01.XLSX:SELECT * FROM SAMPLE.CSV WHERE id_sample > 50
SAMPLE_OUTPUT_WHERE_02.XLSX:SELECT * FROM SAMPLE.CSV WHERE id_ssgroup = '001' AND id_sample > 75
SAMPLE_OUTPUT_WHERE_03.XLSX:SELECT * FROM SAMPLE.CSV WHERE SUBSTRING(id_ssgroup, 3, 1) = '1'
SAMPLE_OUTPUT_ORDERBY.XLSX:SELECT id_sample, li_sample, dt_random_date FROM SAMPLE.CSV ORDER BY dt_random_:
SAMPLE_OUTPUT_FUNCTION_01.XLSX:SELECT id_sample, CONCAT(li_sample, ", li_random_string) as Concat FROM SAMPLE
SAMPLE_OUTPUT_FUNCTION_02.XLSX:SELECT id_sample, SUBSTRING(id_group, 3,1) as SubstringGroup, LPAD(id_group, 8
SAMPLE_OUTPUT_CASEWHEN.XLSX:SELECT id_sample, CASE id_sample WHEN 1 THEN 'Hello' WHEN 2 THEN 'World' ELSE "
SAMPLE_OUTPUT_GROUPBY_01.XLSX:SELECT SUM(nb_random_number) AS RandomsSum, id_group as Group FROM SAMPLE
SAMPLE_OUTPUT_GROUPBY_02.XLSX:SELECT SUM(nb_random_number) AS RandomSum, MAX(id_sample) AS IdMax, id_arc
SAMPLE_OUTPUT_GROUPBY_03.XLSX:SELECT SUM(nb_random_number) AS RandomSum, SUBSTRING(id_aroup, 3, 1) asG
SAMPLE_OUTPUT_LEFTJOIN.XLSX:SELECT fileA.id_sample AS IdInitial, fileB.id_sample_join ASIdJoin, fileB.i_sample_join asLi
SAMPLE_OUTPUT_INNERJOIN.XLSX:SELECT fileA.id_sample AS IdInitial, fileB.id_sample_join AS IdJoin, fileB.li_sample_join as
SAMPLE_INNERJOIN_SUBQUERY.XLSX:SELECT fileA.id_sample AS IdInitial, fileB.id_sample_join AS IdJoin, fileB.li_sample._join
SAMPLE_OUTPUT_CROSSQUERY.XLSX:SELECT id_sample as JoinField, li_sample FROM SAMPLE.CSV [--[3]] SELECT id_samp
SAMPLE_CROSSQUERY_WHERE.XLSX:SELECT id_sample as JoinField, li_sample FROM SAMPLE.CSV [<>[3]WHERE Ii_samp!
[2]SAMPLE_OUTPUT_TARGET_01.XLSX[3]SAMPLE_OUTPUT_TARGET_02.XLSX:SELECT * FROM SAMPLE.CSV ASMYTAB
SAMPLE_OUTPUT_DYNAMICPARAM.XLSX:SELECT id_sample, CONCAT(li_sample, /', {713, "/, i_random_string) as DynamicC

Quick Help

[save sob @D Abort Jot Simulation Mode () start Job

- Alob that retrieves data from the demonstration webservice and integrates it into Fuzible's local database:

%3 SHS Fuzible Data Replicator, Synchronizer — - o X
File Configuration Tools Help
GuZM 130] WS -> SQUTE : Démo v Create new Step
Job Configuration Source : Webservice REST Target : MySQL/MariaD8 Database Queries Log Viewer

b Quer Sandbox
Show me an exemple

sample1:SELECT * FROM /ws/public/sample_data

sample2:SELECT id_sample AS FirstColumn, li_sample AS SecondColumn
FROM / i :_data?limi 2

sample3:SELECT id_sample, substring(li_random_string, 1, 5) asi_substr

FROM /ws/public/sample_data?order=desc[{ "id_ssgroup”:"'001""}]
sample4:SELECT id_sample, substring(li_random_string, 1, 5) as li_substr, id_ssgroup
FROM /ws/public/sample_data?order=desc

WHERE id_ssgroup = {71}

Quick Help
Synchro : Bypass query filtersin Target
[save sob 1 Jok Simulation Mode (®) start Job

Quick Help Button

Some features do have a small "?" button to give you some quick explanations without having to look at the
full documentation:

Job Type Data Replication v

Dynamic Parameters

View Job With Replaced Values

v

Tutorials

Three tutorials have been programmed to make it easier for you to accommodate with the software. You
can find them here:

tor, Synchronizer

1-File to SQL Replication (step by step job creation)

About 2-5QL to File Replication (step by step job creation)

Browse the Website

3-File to SQL Synchronization (step by step job creation)

Download DB Browser for SQLite
Documentation

@ Contact us

How to Register

Enter License Key

A script then triggers, and you will be fully guided.

"Escape" key: Leaves Tutorial mode
"F1" key: Move forward at the next step.
"F2" key: Go back to the previous step.

g? SHS Fuzible Data Replicator, Synchronizer

File Configuration Tools Help

GUIZM v Create new Step

Source Target Queries Log Viewer

Select ‘Data Replication’ for a simple data copy Job :

Job Type Data Replication v

Query Assistant
When you are creating your Job, you'll be writing queries, 2 options are available to help you understand
Fuzible's philosophy.

"Show Me an example" will show you a "generic" query adapted to the scenario you set.
"Basic Query Builder" will accompany you in creating a simple query.

g? SHS Fuzible Data Replicator, Synchronizer - O x

File Configuration Tools Help

GUIZM ~ Create new Step

Job Configuration Source : SQLite Database Target : CSV File Log Viewer

Sandbox

Show me an exemple

ReplaceBy_AnyFile.CSV:SELECT * FROM user_parameters _

Query Analyzer

> Source Infos 3
> Target Infos 4
> Query Details 3

Execute Query

> Run this individual query

Scripting
> Get full header from query and copy/paste it 3

At T Uy TTaTe paraneteT

> Basic Query Builder

Advanted Query SCriptrg
> Add Cross-Connections Join

> Create Dual Target

> Multiple files Output Patterns 3

Quick Help

Save Job Abort Job Simulation Mode Start Job

However, once you understand the logic of the program, these 2 options will be of no use to you, they are simply
here to help you understand how Fuzible works, but I'm sure that Tutorials and Demonstration Jobs will be much
more useful!

Online help
If you need additional help, feel free to go to the forum (link at the top of this documentation), contact me,
or download Demo Job.

Indeed, Fuzible allows you to create complex scenarios. Its highly modular design allows it to meet many needs, but
it can be helpful to ask for help if you are not sure the best way to achieve your goals.

Software Settings

Connections
Go to the Configuration / Connections menu to set up the connection strings.

| ﬁ? SHS Fuzible Data Replicator, Synchronizer

File Configuration Tools Help
Log
GuI
saL
File)
Job) Target Queries Log Viewer
~— Webservices
Jol Mail
Data Analyzer
Service/Client App
A menu then opens:
=] =
Configuration I
Log - Errors SHS Analyzer saL File Mail Webservices Service/Client App Dev.

Create New Connection Save Connection

Try Connection Delete Connection
Connection String Assistant

Cennection name

Driver hd

Save Configuration

You can either choose to change or delete an existing connection.

Beware of impacts, the red connections in the list are used in at least 1 job! You can see this impact by flying over
the name connection with the mouse:

Creal
v

[11] -> MySQL Raspberry

Used in one or more Jobs :

JOB [13]:
JOB [20] :
JOB [30] :
JOB [31]:
JOB [32]:
JOB [35]:
JOB [36] :
JOB [41] :

[Queries]

[Conn. String Target][Queries]

[Conn. String Target]
[Queries]
[Queries]
[Conn. String Source]
[Conn. String Source]
[Conn. String Source]

[r=r-

Oracie vivT

Driver (*xls, *xlsx, *.xlsm, *.xlsb)

ess Driver (*.mdb, *.accdb)

[Sqlite Database]

[5] -> Local SQLite File

[17] -» Copy of Local 5QLite File
[MS Access Database]

[18] -> Test Access OLEDB Driver
[MongoDB Database]

Each connection is identified by an ID (ex: [10]) which allows it to be used in queries (see chapter related to queries)

Create New Connection Save Connection
[11] -> MySQL Raspberry v
Try Connection Delete Connection
Connection name MySQL Raspberry Connection String Assistant
Driver MySQL/MariaDB v Scan Network for instances Dates dd/MM/yyyy ~ Decimals (comma) ¥

- The common settings allow you to create a new connection:
1/ From an existing connection if already selected.
2/ From the data entered by the user.

- You can also test the current connection to check if it is working.
- The connection string assistant will accompany you during the creation of the new connection.

- You can also change dates & decimals localization connection properties: you may need for example to
extract US data (MM/dd/YYYY dates, dotted decimals) and import them into a European database
(dd/MM/yyyy, comma decimals)

It’s not changing your OS locales — you just change the way data is handled by Fuzible for a specific
connection.
Note : by default, the localization settings are set according to your OS localization.

- Finally, in the case of a database, an option allows you to scan the local network to find possible available
instances (the tool scans the network for open ports: those are different depending on the SGBD you
choose).

Database

g@ Configuration

Configuration

Log - Errors

SHS Analyzer sQL File Mail Webservices Service/Client App Dev.

Create New Connection Save Connection
[11] -= MySQL Raspberry v
Try Connection Delete Cennection
Connection name MySQL Raspberry Connection String Assistant |
!
Driver MySQL/MariaDB v Scan Network for instances i

MySQL/MariaDB Cannection String (ex : Server=myServerAddress,Database=myDataBase Uid=myUsername:Pwd=myPassword:) :

Server=192.168.0.105; Uid =guizmox; Pwd=myPassword; Port =3306; DATABASE =test; Ss/IMode=none;

Compatibility params (don't edit default values if you don’t know how to use those parameters) Load default params.

P_CHANGE_COLUMN_ADD_UNIQUE=ALTER TABLE “{TABLE_NAME]" ADD UNIQUE ({COLUMMNS_LIST});

P_CHANGE_COLUMN_ALLOW_NULL=ALTER TABLE {TABLE_NAME} MODIFY {CCLUMN_NAME} {COLUMN_TYPE};

P_CHANGE_COLUMN_DEFAULT_VALUE=ALTER TABLE “{TABLE_NAME}” MODIFY {COLUMN_NAME} DEFAULT {DEFAULT_VALUE};

P_CHAMGE_COLUMN_DISALLOW_NULL=ALTER TABLE {TABLE_NAME} MODIFY {COLUMN_NAME}" {COLUMMN_TYPE} NOT NULL;

P_CHANGE_COLUMMN_TYPE=ALTER TABLE "{TABLE_NAME)" MODIFY “{COLUMN_NAME}" {COLUMN_TYPE} {NULL_NOT_NULL);

P_CHECK_TABLE_EXISTENCE=SELECT COUNT(*) FROM INFORMATION_SCHEMATABLES WHERE TABLE_SCHEMA = {DATABASE_NAME}' AND TABLE_MAME = '{TABLE_NAME};
P_CREATE_COLUMN=ALTER TABLE "[TABLE_NAME} ADD “{COLUMN_NAME} {COLUMN_TYPE} (NULL_NOT_NULL};

P_CREATE_PRIMARY_KEY=ALTER TABLE "[TABLE_NAME]}" ADD CONSTRAINT {CONSTRAINT_NAME} PRIMARY KEV({COLUMNS_LIST});

P_CREATE_TABLE=CREATE TABLE “{TABLE_NAME} ({DEFINITION});

P_CREATE_TABLE_LOG_ENT=CREATE TABLE "{TABLE_NAME_ENT] (id_job™ INT{11) NOT NULL AUTC_INCREMENT, li_jeb™ VARCHAR(80) NULL DEFAULT NULL'dt_job™ TIMESTAMP NULL DEFA
P_CREATE_TABLE_LOG_LIG=CREATE TABLE “{TABLE_NAME_LIG} ('id_job’ INT(11) NULL DEFAULT NULL,"id_ligne” INT(11) NOT NULL AUTO_INCREMENT, dt_event” TIMESTAMP NULL DEFAUL i

Save Configuration

A complete listing of connection strings can easily be found online: https://www.connectionstrings.com/

However, here is a basic example for the different SGBDs

DRIVER TYPE EXPECTED CONNECTION STRING

BDD SQL Server server=MyServer;DATABASE=MyDatabase;User ID=user;Password=password;Trusted_Connection=True;Connection
Timeout=60;Integrated Security=false;

BDD MySQL server= MyServer;uid= user;pwd= password;DATABASE= MyDatabase;Convert Zero Datetime=True;SsIMode=none;

BDD Postgres

Server= MyServer;Port=5432;DATABASE=MyDatabase;Userid= user;Password= password;Ss| Mode=Require;Trust Server
Certificate=true;

BDD ODBC DRIVER={HyperfileSQL};Server Name=MyServer;Server Port=4900;DATABASE=MyDatabase;UID=user;PWD=password;
BDD SQlite Data Source=C:\Tools\Fuzible\Fuzible.db;Version=3;Foreign Keys=true;

BDD Access Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\Tools\Fuzible\accessDB.accdb;Persist Security Info=False;

BDD Oracle Data Source=WIN81VIRTUEL;User Id=guizmox;Password=myPassword;

https://www.connectionstrings.com/

ODBC Driver Case: Fuzible uses specific queries and settings for each type of database for its proper operation. By

definition, those are unique to each SGBD and you may want to enjoy all the benefits of Fuzible with an unsupported

native driver.

The "Connection Params" zone is there to meet this need. It sets up each of Fuzible's internal queries to make it

compatible with any SGBD.

Parameter

Value

P_ESCAPE_CHAR

Escape character to delineate table and field names (often quotation marks)

P_DATE_FORMAT

Native date format (DATE, TIMESTAMP, DATETIME)

P_STRING_FORMAT

Native character format (VARCHAR, VARCHAR2, NVARCHAR)

P_CREATE_PRIMARY_KEY

SQL code for creating a primary key in a table

P_CREATE_TABLE

SQL code to create a table

P_CHANGE_COLUMN_ALLOW_NULL

SQL code to allow NULL values in a specific column

P_CHANGE_COLUMN_DISALLOW_NULL

SQL code to ban NULL values in a specific column

P_CREATE_COLUMN

SQL code to create a column in a table

P_CHANGE_COLUMN_TYPE

SQL code to alter the size of a column in a table

P_CHANGE_COLUMN_DEFAULT_VALUE

SQL code to change or put a default value in a column in a table

P_CHANGE_COLUMN_ADD_UNIQUE

SQL code to add a single key to a column in a table

P_SHRINK_TABLE

SQL code to clean a table

P_GET_COLUMNS_LIST

SQL code to retrieve the list of columns of a table (expected: name, type, max size, nullable,identity, type, numerical
accuracy, default, single, key)

P_GET_COLUMN

SQL code to retrieve information from a column of a table (expected: name, type, max size, nullable,identity, type,
numerical accuracy, default, single, key)

P_DISABLE_TABLE_CONSTRAINTS

SQL code to disable table constraints (for example, allow insertion without key control)

P_ENABLE_TABLE_CONSTRAINTS

SQL code to activate table constraints (key control)

P_GET_TABLES

SQL code to retrieve a BDD's table list

P_GET_TABLES_FILTERED

SQL code to retrieve the filtered list of tables of a BDD

P_GET_PRIMARY_KEY

SQL code to retrieve the primary key from a table

P_GET_FOREIGN_KEYS

SQL code to retrieve foreign keys from a table

P_CHECK_TABLE_EXISTENCE

SQL code to control the existence of a table on a BDD

P_DELETE_LOG_EVENTS

SQL code to remove a log line from the program

P_INSERT_LOG_EVENT

SQL code to insert a log line of the program

P_UPDATE_LOG_EVENT

SQL code to update a log line of the program

P_CREATE_TABLE_LOG_ENT

SQL code to create the program's LOG table (header)

P_CREATE_TABLE_LOG_LIG

SQL code to create the program LOG table (lines)

P_CREATE_FROM_SELECT

SQL code that creates a table from another (ex: SELECT * INTO [TABLE] FROM [ORIGINAL_TABLE] WHERE 0 = 1)

Note: You can use dynamic parameters in connection strings by using {?1}, {?2}... Those parameters will be replaced

by those mentioned in the Job (explained later)

Mongodb

ﬁ? Configuration - O X

Configuration I

Log - Errors SHS Analyzer saL File Mail Webservices Service/Client App Dev.

Create New Connection Save Connection
[20] -> MongoDB Raspberry v
Try Connection Delete Connection
Connection name MongoDB Raspberry Connection String Assistant
Driver MongoDB hd Scan Network for instances

MongoDB Connection String (ex : mongodb://name:passwdd@host:27017/db)

mongodb://guizmox:myPassword@192.168.0.105:27017

Read and write parser Generic BSON document v

Generic BSON document

Fuzible document

String

Save Configuration

The syntax of a MongoDB connection string can easily be found online: https://www.connectionstrings.com/

In addition, the MongoDB driver treats collection data as BSON documents by default. However, you can choose to
use a Fuzible-specific type (containing additional METADATA) or simply as strings. It all depends on the use.

https://www.connectionstrings.com/

Files

22 Configuration - | X
Configuration I
Connections Log - Errors SHS Analyzer sQL File Mail Webservices Service/Client App Dev.

~Connection List . .
Create New Connection Save Connection
[1] -> Local Path v
Try Connection Delete Connection
Connection name Local Path Connection String Assistant
Driver CSV File v Browse Filesystem

Local Path, Network Path, (SJFTP URL (ex1 : c\\MyFiles\\ | ex2 : mysftp.mydomain.com) :

C:\Users\guizm\source\Workspaces\Fuzible\Fuzible\bin\x64\Debug\FILES\

Farameters

Source Type Local Path v

Local Path

Network
FTP
SFTP

Save Configuration

You must choose here the local or network path that leads to the files we want to process in a Job.

If you change "Source Type," you can also access the (S)FTP settings:

E@ Configuration

Configuration

Connections Log - Errors SHS Analyzer

saL

File Mail

Webservices

Service/Client App

Dev.

~Connection List

[23] -> FTP Raspberry

~Connection Parameters

Create New Connection

Try Connection

Save Connection

Delete Connection

Connection name FTP Raspberry

Connection String Assistant

SFTP : Optional 55H key path

Driver CSV File v Browse Filesystem Dates dd/MM/yyyy ~ Decimals ,(comma) V
Local Path, Netwark Path, (S)FTP URL fex1 : cAthdyFiles\y | ex2 : mysftp.mydomain.com) :

192.168.0.101

Source Type FTP v

Username ubuntu Password sesscees ? Port 21

Path on server O Use SSL connection

Proxy URL (if needed) Proxy port Proxy Type | NONE v User,Pwd

Choose an openSSH File

Save Configuration

Webservice REST

o]

Configuration I

Log - Errors SHS Analyzer sQL File Mail Webservices Service/Client App Advanced

Create New Connection Save Connection
[9] -= Fuzible Webservice de démonstration v
Try Connection Delete Connection
Connection name Fuzible Webservice de démonstration Connection String Assistant
Driver Rest API v Dates dd/MM/yyyy Vv Decimals ,(comma) ¥

Webservice URL (ex : hitpy//mydemain.com/glpi/apirest.php | ex2 : hitpsy//mydemain.salesforce.com/services/data/v51.0/) :

https: //www.fuzible-app.com

Choose Template (optional) Generic Rest API w Load Template

Headers (p1=vall;p2=val2..)

Authorization Method API auth (header) v Key: |Authorization

Value (keep empty for dynamic retrieval) : ?

Optional URL to get value dynamically :

-~

Proxy URL (if needed) Proxy port proxy Type | NONE ¥ | UserPwd

Save Configuration

A webservice is a little more complicated to set up because there are several ways to interact with them, that's why
a drop-down menu allows you to simplify the task by loading a "template" for some known APIs.

Connection name Facebook API Connection 5tring Assistant
Driver Rest API v Dates dd/MM/yyyy ~ Decimals |, {comma) ¥

Webservice URL {ex : httpy//mydemain.com/glpi/apirest.php | ex2 : hitps:/mydemain.salesforce.comfservices/dataiv51.0/) :

https://graph.facebook.com/

Choose Template (opticnal) Facebook Graph API v Load Template

Generic Rest API
Nuxeo APl (NxQL)
GLPI Rest API
Authorization Method Scope | Authorization
Salesforce Rest API
Salesforce Rest API (SOQL)

Cegid Webservices 9N URL | hitps:y/graph.facebook.com/oauth/access_token

Headers (p1=vall;p2=val2..)

kiz.y: | grant_type=client_credentials

Youtube v3 API 45984123218489 e
Microsoft Graph API
Proxy URL (if needed) Facebook Graph API Proxy Type | NONE v | User,Pwd

Save Configuration

By choosing an example from the list and loading it, the fields will automatically be pre-filled to simplify the setup
and understanding of the APl connection manager.

If you want to configure a connection to an unreferenced API by yourself, use "Generic Rest API", and manually
configure the settings, as well as the authentication mode among the list of those proposed.

The example below shows the setting of youtube's API v3.

Connection name Youtube AP v3 Connection String Assistant

Driver Rest API v Dates dd/MM/yyyy “ Decimals ,(comma) V

Webservice URL (ex : http://mydomain.com/glpi/apirest.ohp | ex2 : hitps://mydomain salesforce.com /services/data/v51.0/)

https://www.googleapis.com/youtube/v3/

Chogse Template (optional) Youtube v3 API =l Load Template

Headers (p1=vall;p2=val2..)

Authorization Methed APl auth (param) v Key: |key

Value fkeep empty for dynamic retrieval) ?

Optional URL to get value dynamically :

Proxy URL (if needed) Proxy port Proxy Type | NONE ~ | UserPwd

For other APIs, apart from entering the URL, one must also provide all authentication information and sometimes

additional header information. For example, a call to the GLPI APl requires a dynamic key... You have to add the URL
from which you’ll retrieve that token (Optional URL to get value dynamically) :

Each connection to the webservice will then automatically first invoke a call to get that token and will allow you to
call any other API object.

53';3 Configuration

Main Parameters

Connections Log - Errors SHS Analyzer sQL File Mail Webservices Service/Client App Dev.

Connection List: [93] -> API GLPI hd Connection String Assistant

Connection Mame : APIGLPI Try Connection

Driver : Webservice REST A

Webservice URL (ex : http://mydomain.com/glpifapirest.php) :

http:// /glpi/apirest.php/
Parameters ;
Prowxy URL Proxy Part
Headers (plvall:p2wal2..) Authorization:user_token Ida3wdPGO98gmJowciZTiu4jAzqrIF3IPVYM4ncii;app-

token:NUjjYrbZik3s0YYW6jKxisaTvyfZTgwfvUBOS33U

Authorizaticn Method APl Auth (Param) Key: |session_token

Value (keep empty for dynamic retrieval)

Optienal URL to get value dynamically : | http:/ /glpifapirest.php/initSession/

Create New Connection Delete Connection Save Connection Save Configuration

Last example, to configure the Microsoft Graph API, we use an OAuth 2.0 authentication with some specific settings
which is described in the online API documentation.

Connection name Microsoft GraphQL Connection String Assistant

Driver Rest API v Dates dd/MM/yyyy “ Decimals ,(comma) Vv

Webservice URL (ex : http://mydomain.com/gIpi/pirestphp | ex2

https://graph.microsoft.com/v1.0/

hitps://mydomain salesforce.com/services/data/v51.0/) :

Choose Template {optional) Microsoft Graph API N Load Template
Headers (p1=vall;p2=val2..) Content-Type=application/json
Authorization Method OAuth 2.0 v

Scope | hitps://graph.microsoft.com/.defauit
HTTP Params (p1=vali&p2=val2.): | grant_type=client_credentials

Token URL | hitps:/login.microsoftenline.com/a65ed46765-pig9-5099-14547- 54598150 5sd1/0a
client ID + client Secret

547741 ?

Proxy URL (if needed) Proxy port ProwyType | NONE v UserPwd

Mail

ae |

Configuration I

Log - Errors SHS Analyzer saL File Mail Webservices Service/Client App Advanced

Create New Connection Save Connection
[10] -> Fuzible Email v
Try Connection Delete Connection
Connection name Fuzible Email Connection 5tring Assistant
Driver Mailbox v Dates dd/MM/yyyy “ Decimals ,(comma) Vv

Customized Connection String (Use assistant) :

SERVER_SEND=ssl0.ovh.net; SERVER_RECEIVE=ssl0.ovh.net;get_protocol=IMAP; AUTH_PROTOCOL=IMAP; PORT
_SEND=465; PORT_RECEIVE=993; USERNAME=guillaume@fuzible-app.com; PASSWORD=myPassword; ss/=1

Protacol IMAP v Authentification NONE v

. Use SSL connection

Proxy URL (if needed) Proxy port Proxy Type = NONE v User,Pwd

Save Configuration

The "Mail" connection string is unique to Fuzible. The "Connection String Assistant” can be used to help build it, but
in short, the following parameters are required:

SERVER_SEND: SMTP URL

SERVER_RECEIVE: POP or IMAP URL

GET_PROTOCOL: The reception protocol: IMAP or POP
AUTH_PROTOCOL: The security protocol: TLS (10,11,12,13), NONE
PORT_SEND: SMTP Port

PORT_RECEIVE: IMAPT/POP Port

USERNAME: the associated email address

PASSWORD: the password associated with the email address

SSL:1or0

You can also set up a proxy.

Active Directory

2R Configuration - [m| X

Configuration I

Log - Errors SHS Analyzer SQL File Mail Webservices Service/Client App Dev.

Create New Connection Save Connection
[21] -=» Fuzible Active Directory Demo hd
Try Connection Delete Connection
Connection name Fuzible Active Directory Demo Connection String Assistant
Driver Active Directory v

LDAP URL (ex : LDAP://DC=mydomain,DC=en) (ex2 : LDAP://mydomain} :

LDAP://fuzible.lan

Compatibility params (don't edit default values if you don't know how to use those parameters) Load default params.

P_AD_SEARCH_GROUP= (& (objectClass=group)([SEARCH_PROPERTY]="))

P_AD_SEARCH_GROUPS = (&[objectClass=group))
AD_SEARCH_USER=(&(objectClass=user)(objectCategory=person)(CN=users)([SEARCH_PROPERTY]="))

P_AD_SEARCH_USERS=(&(objectClass=user){objectCategary=persen))

Save Configuration

The connection string is rather simple, here are two examples:
LDAP://DC=fuzible,DC=fr

LDAP://fuzible.lan

In addition to the connection string, you can modify compatibility settings:

P_AD_SEARCH_GROUP Search query for a specific group SEARCH_PROPERTY will be replaced
by the value set in the Job (see
below). This is the "key" field
available in the AD that defines the
uniqueness of a group

P_AD_SEARCH_GROUPS Group search query

P_AD_SEARCH_USER Query to search a specific user SEARCH_PROPERTY will be replaced
by the value set in the Job (see
below). This is the "key" field
available in the AD that defines a
user's uniqueness

P_AD_SEARCH_USERS User search query

Log

This tab sets up all the software’s LOG options. By default, ". TXT" LOG files are stored here :
C:\Users\Public\Documents\Fuzible\LOG

... but it can also be integrated into a database, or sent by email.

22 Configuration - | X
Configuration l
Cennections SHS Analyzer SQL File Mail Webservices Service/Client App Dev.

SQL Log - Connection String Data Source=C:\Users\guizm\source\Workspaces\fuzible\Fuzible\bin\x64\Debug\win-x64
\Fuzible.db; Version=3; foreign keys=true

Driver SQlite v Create required LOG tables

SERVER_SEND=smtp.office365.com; SERVER_RECEIVE=outlook.office365.com; GET_PR
OTOCOL=IMAP; auth_protoco/=NONE; PORT_SEND=587; PORT_RECEIVE=993; USER
NAME=myMail@hotmail.com; PASSWORD=myPassword; ss/=1

Mail Log - Connection String

Configure your mail @ Use ssLcannection Authentification | NONE N
Keep log until (days) 8
Keep processed files until (days) 30

Den't send mail if job finished without any error
@ show CPU/RAM alerts

Abort Job when errors exceeds 10

Save Configuration

SQL Log
It is strongly advised to change SQL instance to store LOG, by default, it is the local Fuzible database that is used, but
if you want to manipulate/get the LOG from elsewhere, you should use a network database (MySQL, SQL Server,

Oracle, Postgres...)
In this case, the program will automatically create the required SQL tables in this new instance.

Mail Log
By default, this field is empty. This connection to an inbox allows you to send Job reports to one or more email

addresses. The connection is configured like any connection (as seen above).

Options

Abort Job when errors exceeds If this number is exceeded during the execution of the Job, then it is interrupted

Keep log until (days) The LOG files and SQL entries can clean themselves beyond a number of days you can set here

Keep processed files until (days) With a "File" connection string, Fuzible can clean up the directory by erasing files that are too old. The
number of days of file preservation is defined here.

Don't send mail if job finished without any error If the job is set up to send an e-mail at the end of the process, and if it went smoothly, you can avoid
the mail to be sent

Show CPU/RAM alerts When the CPU reaches 100%, the warning is logged, allowing you to check the need for additional
resources on the server/computer that hosts the app

SHS Analyzer

Fuzible contains a data analysis engine: it analyzes all the source data, and can then create SQL tables as

accurately as possible when they are non-existent and a Job uses a database as a Target.

These operations are very resource-intensive and can easily solicit the machine at 100%. To avoid this saturation,

Fuzible can be set to use only a part of the available resources.

& —
Configuration I
Connections Log - Errors sQL File Mail Webservices Service/Client App Advanced
Multithreading (cores) 8
Parallel Threads when loading/copying huge SQL datasets or CSV files 2

O Cast rounded .0 decimals as integers (ex : 5.00 will be interpreted as an integer)

O Cast numbers starting with ‘0" as integers (ex : 0150 will be interpreted as an integer)

. Multi-target Queries : write both targets in parallel (CPU-RAM intensive)

Options

Save Configuration

Multithreading

Number of CPU cores that can be used by the software (minimum - 2)

Parallel Threads when loading/copying huge CSV
datasets or CSV

Fuzible usually loads the whole Source Data in RAM, and then proceed with the Target
replication/synchronization. In case of huge CSV or SQL tables (millions of rows), it loads data in smaller
chunks. That way of loading data can be performed using more than one thread to increase speed : the
next chunk can be loaded while the last one is copied in the Target.

The more you add threads, the more you’ll need CPU power and RAM.

Cast rounded .0 decimals as integers

When analyzing numerics, Fuzible can consider 5.00 to be an integer rather than a decimal

Cast numbers starting with '0' as integers

When analyzing numerics, Fuziblz can consider values like 0546 or 0000477 to be integers rathen than
strings

Multi-Target Queries: Write both targets in
parallel

For a Job using multi-target feature, you can choose to the 2 targets in parallel for better performances
(requires LOT of computing power)

SQL

All the settings for the "SQL" connections are grouped here.

= . I
Configuration I
Connections Log - Errars SHS Analyzer File Mail ‘Webservices Service/Client App Advanced
Command timeout 360
Transaction size 128
Bulk Insert Mode Rows/Batch : 1000
Rows quantity to get before copying (Direct Stream Mode) 100
Synchro. table Log fuzible_synchro_records
O Auto shrink tables
1]
Save Configuration
\
Options
Command Timeout Timeout to execute an SQL command
Transaction size When a Job whose target is an SQL database, "INSERT/DELETE/UPDATE" statements are framed in

transactions (which allows a ROLLBACK if the query fails).
The number of statements / transactions is to be defined here. The larger the number, the more the
target database resources will be solicited

Bulk Insert Mode Rows/Batch Applies when configuring a Job using the “Bulk Insert” mode. It defines the amount of rows you want to
copy at one. le : if there are 10 000 rows to insert and you did choosed a 1000 rows batch, 10 Bulk
batches will be sent to the target Database.

Row quantity to get before copying (Direct The « Direct Stream » feature is configured in the Job and is mostly used when querying huge SQL tables
Stream Mode) (millions of rows) : To avoid memory issues, data is loaded and transferred to target in small chunks.
You can set here the length of each chunk (rows quantity).

Increasing the value requires more RAM.

Syncho. Table LOG For Jobs running in "Synchronization" mode, synchronization statuses are stored on a separate table
(for consultation and information). You can choose the name here.

Auto shrink tables An option to clean a Target table after processing it.

File

All the settings for the "FILE" connections are grouped here.

& —
Configuration I
Connections Log - Errors SHS Analyzer Mail Webservices Service/Client App Dev.
Working path Processed
Source files move path Export . Add datetime prefix
CSV separators S

. CSV/XLS : Force Integration of row(s) not matching the header length

Save Configuration

Options

Working path

When a Job is set with a "File" Source connection, and it has been set up to move those files when the

Job is finished, the directory in which they are moved is defined here

Source files move path

Unused for now

Add datetime prefix

In addition to moving files at the end of a Job, these files can also have a prefix in the form of
"YYYYMMddHHMMss_Myfile.xxx" to eventually facilitate their subsequent search (if needed)

CSV separators

List of accepted CSV separators ("\t" means "tabulation"). You can add more if you are dealing with files

using some other separator.

CSV/XLS : Force Integration of row(s) not
matching the header length

If for some reason your source files have inconsistent row length, you can force the integration of those

rows or bypass them. In any case, a “WARNING” LOG message will be triggered

Mail

All the settings for the "MAIL" connections are grouped here.

g? Configuration
Configuration
Connections Lag - Errors SHS Analyzer saL File Webservices Service/Client App Dev.
Admin email address
Max. length before sending sheet as an XLS attachment 65536
Max. attachment file size (in kB) 2048
Timeout 30000
Save Configuration
Options

Admin email address

The program administrator's email (will be cci’ed of any mail produced by a Job)

Max. length before sending sheet as an XLS
attachment

When a Job is configured with an email address as a target, you can choose the data to be included in

the mail body.

However, if this content is too big, Fuzible can, instead, create an EXCEL file that will then be attached
to the mail. This setting shows the maximum number of characters from the Data Source before the Job

switches to "attachment" mode.

Max. attachment file size

Maximum size of an attachment. Beyond this limit, the attachment will not be sent

Timeout

Timeout to run an operation on the mail server

Webservices

All the settings for the "WEBSERVICES" connections are grouped here.

& —
Configuration I
Mail Service/Client App Advanced

Connections Log - Errors SHS Analyzer s5QL

Timeout 30000

Default encoding 1SO-8859-1 UTF-8

. Save responses in source : Allow schema alteration

. SQOQL (Salesforce) Queries : Get Records Datatable Only

Options

Save Configuration

Timeout

Timeout to run an operation on the remote server

Default encoding

When A WS's data is processed, the program determines the encoding from what the server answers. If
this information is unavailable, a custom encoding may be forced by default. 2 values to indicate: the
1st for the "REST API’s” and the 2" for the Nuxeo API.

Save responses in Source: Allow add-alter
columns

When sending data to a webservice, this one sends back an answer (in XML or JSON format). Those
answers can be retrieved and stored in the Source database (if SOURCE-BDD) or as a file (if other).

In case of a Database, you could allow Fuzible to modify the SQL tables if the data returned by the APl is
not compatible with them.

SOQL Queries : Get Records Datatable Only

This setting allows, when using the SOQL language, to retrieve only the records datatable : will not get
the additional tables : attributes and query summary

Service/Client App

Fuzible comes with a "Service/Client" module.

The "Service" background application is the subject of a dedicated paragraph, but in short, it executes Jobs that are
invoked either by a user (via the "Client" application) or by the Orchestrator (Jobs Orchestrator)

The "Client" app is a mini-application that simply allow any user to trigger a Job execution remotely, whenever he
wants.

| &8 Configuration - [m| X
Configuration I
Connections Lag - Errors SHS Analyzer saL File Mail Webservices Dev.

SOL Service app - Connection strin | 2afa Source=C:\Users\Guizm\source\Workspaces\Fuzible\Fuzible\bin\x64\Debug
\Fuzible.db; Version=3;

Driver SQLite v
Create Windows Task (Task Manager) Create required service tables (planification, stack, jobs)
Working userspace GUIZM v
Parallel Jobs 2
Keep stack until (days) 30
Client app flooding delay (min) 15

Save Configuration

Connection string: By default, Fuzible uses the local SQLite connection, but this way of working is not really
recommended. Indeed, the "Service" application is intended to communicate with the "Client" application,
distributed to any user. In a network environment, you probably do not want anyone to have the Fuzible network
path opened and accessible to anyone. On the other hand, your network can be configured so that client computers
can make calls to a database instance.

Options
Create Required Service Tables This button allows you to automatically create all the required SQL tables for the service app to work
properly (in case of a change in connection string)
Create Windows Task Creates the "Fuzible Service App” task in the Windows task manager.
Working User This is the account the "Service" app uses to work. This account corresponds to one of the Fuzible users:

the service application can only interact with one of the users, to avoid anarchic management of the
orchestration and Jobs made available to the Client application.

Parallel Jobs The Service app detects the Jobs invoked as they go along. It can run several in parallel but beware of
the risk of overdlow. Here you choose the number of Jobs it can launch in parallel: This setting should
be based on the resources allocated to the server/computer that runs the application.

Keep Stack Until (days) Retention time before the Jobs stack LOG must be cleaned.

Client App Flooding Delay The "Client" app allows users to remotely launch Jobs. They could trigger the same Job several times,
flooding the system. This setting allows you to set a delay between 2 successive launches of the same
Job, in order to prevent them from "spamming" the queue and overloading the system.

Dev.

Here are several parameters related to how the program internally works. Even if you would probably never need to
change those settings, | choose to make them available. However, it is not advised to change them without
understanding how they work, it could compromise your existing Jobs. The online forum may allow you to chat with
other users about it.

Configuration I

_ Connections Log - Errors SHS Analyzer sSaL File Mail Webservices Service/Client App

Maximum rows analyzer (header, separator) 10000

Source CSV splits when row count exceeds 100000 . Don't check files coming from (S)FTP
Header analyzer - Depth analysis resemblance offset 0,5

Header analyzer - Depth analysis unicity offset 0,75

Header analyzer - Row offset before depth analysis 100

Errors overflow {(more failed queries will throw an error, |32
Max decimals (more will be rounded) 20

Query characters (debug) 16384

O Shared Users (all users shares the same session) GUIZM

Software Registration Method Mail (Offline) A

. Enable Query Assistant Analyze Files - Max. Size : 50485760 | Shell operations timeout {min) 120 480

. Json parser : replace special chars in columns names

Save Configuration

XLS/CSV maximum rows analyzer Fuzible automatically scans the EXCEL and CSV files to determine if the first line is a header.
In the case of files with a large number of lines, the ent are analyzerdoes not necessarily need to
analyze all the lines to detect it. The maximum number of lines to be analysed can be set here

Source CSV split when row count exceeds If the source is a CSV file, the program systematically counts the number of lines of it. If this number
exceeds a certain amount, Fuzible can process the file into several chunks to avoid overload of the
server's RAM. The value indicates the maximum number of rows contained in each chunk.

Don't check files coming from (S)FTP In connection with the previous option, if the files come from a server (S)FTP, it is possible to bypass the
line count, because this analysis requires downloading the file, which can severely penalize the

performance of the program.

Header Analyzer - Depth Analysis Resemblance A threshold that determines the percentage of resemblance between the first line of the analyzed file

Offset and all the others. The resemblance is calculated internally by doing several tests on the file. The scan
can be displayed if the Job is configured in "Debug" mode

Header Analyzer - Depth Analysis Unicity Offset When automatically analyzing the contents of an EXCEL or CSV file, Fuzible determines the uniqueness

of the first line of the file compared to the others.

- If the percentage of uniqueness exceeds thethreshold, and in addition, the percentage of
resemblance of the first line is above the "Offset Resemblance" threshold, it is considered that
the first line is not a header

- If the percentage of uniqueness exceeds the threshold, and in addition the percentage of

resemblance of the first line is below the "Resemblance Offset" threshold, the first line
is considered a header

- If the percentage of uniqueness is below the threshold, and in addition the percentage of

resemblance of the first line is less than or equal to the threshold "Resemblance Offset", the
first line is considered a header

- If the percentage of uniqueness is below the threshold, and in addition the percentage of
resemblance of the first line is above the "Resemblance Offset" threshold, it is
considered that the first line is not a header

Header Analyzer - Row offset before depth
analysis

In the case of files with few lines, header detection can be tricky (sample too small to calculate a
percentage of resemblance between the first line and all the others). Below the threshold (number of
lines) entered here, the program goes into "end" mode. It will finely analyze the file, and play on the 2

parameters mentioned above to determine the header

Max Decimals

In "target- BDD" mode, defines the maximum number of decimals tolerated when inserting
data(where source data would have for example 35 digits after the comma and one wishes to limit this
amount)

Errors Overflow

If an executed query didn't work, Fuzible marks it as a "warning." You can set here a threshold of

queries that have not resulted from whichthe Fuzible considers it to be an error and NO Ionger a
"warning" (will trigger an error message)

Query characters (Debug)

When a Job is set up with log in "Debug" mode, and the Job target is a BDD, all
INSERT/DELETE/UPDATE queries will be entered into the DEBUG file. The volume can be considerable,
so it is possible to limit the amount of characters built into the LOG

Shared Users

By default, any Windows user has its own Fuzible session : connections, configuration, jobs are not
shared with the others. In that mode, you can still import Jobs from another session and load another
userspace but in a « read-only » mode only.

In your organisation, you could need a shared session : any user will be routed to the one who's
choosed here. The whole program is then shared with all computer users.

It implies some confidentiality compromises (ie : connection strings are visibles by any Fuzible user)

Software Registration Method

How to communicate with Fuzible's SErver when you want to save the program. You should leave
"Webservice" by default. The "Mail" mode will only serve in case you are unable to communicate with
the server (offline mode)

Enable Query Assistant

Turns the assistant on interface queries (colorization, consistency controls, input proposals) is activated
ordisables. The assistant can consume a lot of resources because in case the Source is a database, he
asks him to know the tables available and the fields of each table.

If it's a file-type source, it scans the directory to find the names of the files, and scans each of them to
find the headers.

Shell Operations Timeout

When a Shell Pre or Post-Job command is scheduled, the maximum default execution time is 60
minutes. Beyond this time, the task is interrupted. So we can intervene here on this parameter

This setting is also used by the "Service" app. When she performs Jobs, she casts Fuzible in a set-up
manner. The program is then subject to the same Timeout rules

Json Parser: Replace special tanks in columns
names

When a JSON file (or webservice response) is interpreted, column names sometimes contain special
characters: it can be decided here to replace them with a more conventional character(the underscore)

Analyze Files — Max Size

When using the Query Assistant with “FILE” as the Job Source Connection, it will parse the file you are
querying to find all the columns and add them to auto-completion system. If the file reaches a max. size
(in kb), it won’t be analyzed because it will consume too much power (CPU/RAM). In case you don’t
know the available columns in the file, you should first perform a “SELECT * FROM...” to show available
columns and use them in your Query after that

Tools

Export Job (XML)

This menu allows you to export a Job using XML format: This extraction contains all job settings, associated
connections (as well as those that may be called by script fields), and queries. The file is encrypted so that it can only
be imported into another environment if the user knows the password: it is the job's default password.

Import Job (XML)

This menu allows you to import a Job using XML format: Integration into your environment includes creating
associated connections with the Job, settings, and queries. The Job password is required to perform the importation.

Reorganize Jobs

You can reorganize Jobs here. Indeed, it is possible to create "multi-step" jobs (which are no more or less
than several jobs launched one after the other.

This menu allows you to:

- Drop a main job to another job as a step.

- Extract a "step" in a "multi-step" Job to put it as a single Job.

- Reorganize the steps order in a "multi-step" Job.

% Organize Jobs

[4] - GLPI -> Ysera : Tickets

[38] - Debug : MySQL -> Paostgres Full Synchro

[35] - MySQL -> Postgres : Synchro Complex WHERE
[31] - Postgres -> Access : Full Copy

[41] - Synchro Error

[17] - Test Access -> SQLite

[15] - Test ODBC Excel -> SQLite

[16] - Test SQLite -> ODBC Excel

| [9] - Accounting Data To Datawarehouse

34] - ALL SCENARIO JOB

3] - CrossQuery Demo

1] - Demo Job 002

33] - TUTORIALIOB - WORDPRESS

Move as sub-job

[9-2] - Payroll data to Datawarehouse
[9-3] - Test Partial delete source

Move as main Job

Move down

Move up

Multi-step Jobs are bolded. When you click on one of them, you see the list of sub-jobs.

Move as Sub -Job

Moves a Job into another one. It will then become a sub-job. If it is moved to a Job that already has sub-jobs,

it will be positioned last.

Move as Main Job

Extracts a sub-job to make it a main job. You will be asked to set a password for him.

Move Down/Up
Moves a sub-job to change the execution order of a "multi-step" Job.

Note: If you move a Job to a sub-Job, and automatic launch schedules are associated with it, you will be alerted, and
the app will ask to delete or maintain this schedule.

Import External Job Parameters

You can import a job from another user here (you have to know the password)

—
;E_;? Import Job parameters from another userspace - m} X

Load another userspace

BATMAN v Import Job parameters
GTRADMIN

Cancel

Shows the list of available users.

... then the list of Jobs associated with it:

| |
ﬁ? Import Job parameters from another userspace — O X

BATMAN v Load another userspace

Import Job parameters

[1] CSV -> XLS : This is a sample Job
Cancel

This information is read from the Fuzible's configuration file. You can also load another "Load Another Database file"
to retrieve Jobs from other environments.

Note: Importing a "multi-step" Job is not possible. They are displayed as normal Jobs, with the difference that they
appear in black and not blue.

After entering the password, the Job is imported (filling the settings fields) and the associated connections, imported
automatically if you do not have them in your list.

If a connection ID is mentioned in the Job queries (cross-join queries, multi-target), they are also imported and
transcoded automatically. You don't have to do anything to set up the Job again.

After import, you then have to click "Save configuration" to create a new job, based on these new parameters.

Load another Userspace (read-only)

You can load the whole configuration of another user, for example to launch one of its jobs.

On the other hand, it is impossible to change any parameter of its configuration and its jobs. Only the dynamic
parameters field can be changed. This allows you to benefit from the dynamic setting, which may be necessary.

You can also change the orchestration of his Jobs, a crucial feature because if you urgently need to have an hand on
the orchestration and the account owner is not here, you will need to be able to change the setting for him.

Job Creation

Job Configuration tab

Time to create Jobs.

ﬁ? SHS Fuzible Data Replicator, Synchronizer — O X
File Configuration Tools Help
GUIZM ~ Create new Step
Source Target Queries Log Viewer
Job Description
Rename Job Change Password
Create New Job
Delete Job Planification
Job Type Data Replication b
Dynamic Parameters ?
View Job With Replaced Values
v
LOG Level Errors + Informations v Log in SQL
Send Mail When Finished
Visible in Client App . Bypass Post-Commands (Source/Target) if Job has Errors
Command Line Fuzible.exe "GUIZM" *

@ Abort Job Simulation Mode @ Start Job

Set up the general settings of your new Job here.

Options

Job description

A text field that allows you to describe the purpose of the Job.
This field also serves as an object for a Job whose Target is an inbox.

Job Type

Data Replication (copy) or Data Synchronization
= See "Job Type"

Dynamic Parameters

Dynamic variables: allows you to dynamically change the behavior of some Job parameters/queries.

% YYYY I MM< 1M, [4]]

Cynamic Parameters

Each variable is separated by a "; " Up to 9 variables are accepted
= See "Script language"

Visible in Client app

Check this if you want the Job to be available in the Client App (can be then remotely launched)

Abort next steps on errors

During a multi-step Job execution, you may want to abort next steps if errors are detected

Bypass post-commands if job has
errors

Avoid post-job commands if it has encountered errors
= See "post-commands"

LOG level

The desired LOG level

LOG Level Errors + Informations v

Send Mail When Finished ~ ErTOrs
Errors + Informations

Errars, Informations, Details

- ERRORS: You will only receive WARNING and ERROR messages from the Job

- ERRORS - INFORMATIONS: You'll also have informative messages that indicate progression

- ERRORS, INFORMATIONS, DETAILS: You will also receive details of internal operations : calculations, information
related to data analysis...

Log in SQL If the SQL connection string is set up (Program Configuration), it is possible to define here if you also want the Job to
be logged into that SQL database
Send mail when finished You can enter e-mail addresses here (separated by a comma) : A report of the Job will be sent to these people
(report containing the execution status, as well as the LOG files
Command Line Code that allows you to launch the Job without launching Fuzible (silent mode)
Command Line Fuzible.exe "GUIZM" “[34]" "88BURGN +VNSOwp0gCebQ==""%DD%MM&%YYYY"
Arguments:
- User
- Job Number

- Job password
- Dynamic parameters (those seen in the Dynamic Parameters field)

Job Type

Data Replication

Job Type Data Replication ~

Dynamic Parameters ?

View Job With Replaced Values

This mode is available for any type of target. It consists of simply copying data from a Source connection to a Target.

Data Synchronization

Job Type Data Synchronization ~ ~ Allow Delete, Update, Insert Historize UPDATED and DELETED rows

Allow Delete, Update, Insert

Allow Update, Insert

Dynamic Parameters Allow Update ?
Allow Insert

Allow Delete, Insert View Job With Replaced Values

Allow Insert, Tag Deleted + Updated row(s)

This mode is only available for AD, File and database Target connections.

It compares what is sent from point A to what already exists at point B. To do this, Fuzible will dynamically transcode
the Source query to be comprehensible by the Target (assuming that the source and target may be or different
or/and share different column names)

The comparison is based on the search for a Primary Key.

Fuzible uses several methods to find a primary key and proceeds from the simplest to the most complex:

In SQL mode

1/ Searching for the primary key by querying the BDD schema (Target first, then Source)

2/ Search for unique keys by querying the BDD schema (Target first, then Source)

3/ Automatic detection by analyzing all the combinations of columns and values that exist in the Source (this
method can take a lot of time if the number of rows is huge)

In FILE mode
The automatic detection mode is used.
In ACTIVE DIRECTORY mode

The Primary Key field is defined in the "Target" tab

It is then possible to define the behavior on the Target:

- Insert new Source rows missing in the Target.

- Update rows that already exist in the Target, but whose content is no longer the same in the Source.

- Remove rows that are in the Target, but no more in the Source

- TAG: If data is to be deleted in the Target (not existing in the Source anymore) you can chose to keep it but
create a "SYNCHRO_TAG" field using the "D" value (DELETED) on rows that should have been erased
Similarly, the updated rows can be tagged "U" (UPDATED)- however, they will be updated.

The "Historize Updated and Deleted Rows" option creates or fills a table next to the target table (with the
_hist extension) that contains all rows that have either been deleted or updated during sync. It basically
creates a table with the exact same schema and adds a new index column to it, as well as a timestamp
column.

Language Script

All Fuzible "text" fields accept scripted parameters that will be interpreted and replaced by associated values.

Those can be made Dynamic:

- A connection string (for example, changing the server, the user, the database, the path of a file...)

- Queries (for example, making dynamic filters)
- Add additional, custom columns to content.

By design, any "text" area of Fuzible understands and interprets script language. The script zones are framed by brace brackets.

Here are the variables that can be used:

- ?1,7?2,?3...: parameters from the "Dynamic Parameters" field

- %MM: month number on 2 characters

- %YY: 2-character year number

- %YYYY: 4-character year number

- %DD: 2-character day number of the month
- %WW : 2-character week of the year

- %HH: Time of Day on 2 characters

- %mm: minute on 2 characters

- %SS: second on 2 characters

- %DTTS / DTTSMILLI: current date in Unix Timestamp format
- <XM : removes X months to MM (if existing) (ex : %6MM<2M)
- <XY:removes X years to YY (ou YYYY) (if existing) (ex : %YY<2Y)

- <XD :removes X days to DD (if existing) (ex : %DD<2D)

- <XW :removes X weeks to WW (if existing) (ex : %WW<2W)

- >XM :add X months to MM (if existing) (ex : %sMM>2M)

- >XY:add X years to YY (ou YYYY) (if existing) (ex : %YY>2Y)

- >XD:add X days to DD (if existing) (ex : %DD>2D)

- >XW :add X weeks to WW (if existing) (ex : %WW>2W)

- %USER: The user's name connected to the app
- %QUERYTARGETNAME: The name of the target.

- -%CT1, %CS1, %CT2, %CS2... : If specified in the dynamic parameters list, this setting will be replaced by the returned
value from a Source pre-command (%CS1) or a Target pre-command (%CT1)

Examples (base: March 20, 2018, consider that ?1 = 100 et 2

= ‘TEST))

SELECT * FROM MONFICHIER_{ %XMM%YYYY}.csv

SELECT * FROM MONFICHIER_032018.csv

SELECT * FROM MONFICHIER{%MM_%DD_%YYYY}.csv

SELECT * FROM MONFICHIERO3_20_2018.csv

SELECT * FROM MONFICHIER_{%MM%YYYY>3M}.csv

SELECT * FROM MONFICHIER_062018.csv

SELECT * FROM MONFICHIER_{%MM%YYYY>3M>1Y}.csv

SELECT * FROM MONFICHIER_062019.csv

SELECT * FROM MONFICHIER_{%DD<10D}.csv

SELECT * FROM MONFICHIER_10.csv

SELECT * FROM MATABLE WHERE ID_TEST={?1}

SELECT * FROM MATABLE WHERE ID_TEST=100

SELECT * FROM MATABLE WHERE ID_TEST ={%YYYY01<2Y_?1-?2}

SELECT * FROM MATABLE WHERE ID_TEST=201601_100-TEST’

Additional note about the use of script language:

- Inthe Dynamic Parameters field, each setting must be separated by a "; " this character reserved for separation cannot

therefore be used in a dynamic value!
- Date "codes" can be used as dynamic parameters:

What if you're assigning “MM” value to {?1} will be replaced by 03 (March if it is March)
You can then schedule more complex things, for example (it's March 20, 2018):
{%YYYY01<2Y-?1} will then be transformed as 201601-_20TEST if ?1 has been set with value _%DDTEST

Job Summary

In addition to this setting, when a Job has been created, you can see a couple of key information (at the top
of the screen): Creation date, last execution, and status of the last execution.

Job Description ‘

Rename Job Change Password
Create New Job
Delete Job Planification

When you save a Job, you will be asked to set a password. It prevents anyone to import your Job without asking your
agreement, but it also serves to prevent unwanted users to launch it from the "Client" app.

This password can be changed, as is the name of the Job.

Orchestration

If the "Service" app is set up correctly, the Job Orchestration tool is available to you. The purpose of this is to
launch Jobs on pre-defined dates/intervals.

When you open a Job, you click "Orchestration," a new screen opens and allows to create, delete, and change your
scheduling plan(s) for that Job.

Creating an Orchestration model works in two modes:

In the form of "days of the week"

Minutes Hours Days Weeks Months
00 01 AM ' Sunday Week 02 January
05 02 AM Monday Week 03 February
10 03 AM Tuesday Week 04 March
15 04 AM Wednesday Week 05 April
20 05 AM Thursday May
25 06 AM Friday @ oo June

Dynamic parameters [125[7]

In the form of "days of the month"

Minutes Hours Days Weeks Months
00 01 AM ' Day 01 [] January
05 02 AM Day 02 February
10 03 AM Day 03 March
15 04 AM Day 04 April
20 05 AM Day 05 May
25 06 AM Day 06 Day of Week Madel June

Dynamic parameters 20

You will necessarily have to choose an item from each column to set an orchestration.

- If, for example, you want to start a Job on the first Monday of each month, at 07:00, you will set the schedule as
follows:

Description Premier lundi de chaque mais, Th

Minutes Hours Days Weeks Months
0o 04 AM Sunday Week 01 janvier
05 05 AM ' Maonday Week 02 février
10 08 AM Tuesday Week 03 mars
15 07 AM Wednesday Week 04 avril
20 08 AM Thursday

. Day of Week R
25 09 am Friday M- juin

- If you want to start a Job every 2 hours, past 15 minutes, on the 20th day of the first 3 months of the year, you will
set the orchestration as follows:

Description TT les 2 heures, passées de 15 minutes, le 20e jour des 3 premiers mois de I'année
Minutes Hours Days Weeks Months

00 02 AM ' Day 18 janvier

05 03 AM Day 19 février

10 04 AM Day 20 mars

15 05 AM Day 21 ' avril

20 06 AM Day 22 Day of Week mai

25 07 AM Dav 23 -t iuin

A planification must include a description, and optional dynamic parameters: These are, by default, deferred from
the Job but you could, for example, set multiple schedules for the same job with a different setting each time (ex:,
launch a data replication on a preprod DB at 07:00, and then launch that same replication on a production DB at
08:00)

£22 Orchestration - O X
Description Sunday, connections 12 and 1
Minutes Hours Days Weeks Months
00 01 AM ' Day 01 ' January
05 02 AM Day 02 February
10 03 AM Day 03 March
15 04 AM Day 04 April
20 05 AM Day 05 May
25 06 AM Day 06 Day of Week Modsl June

Dynamic parameters 2

. . Save planification
Sunday, connections 12 and 1 v . Active

(new) Delete planification

Sunday, connections 12 and 1

Monday, connections 14 and 2

You can obviously edit or delete any of the planifications. You can also choose whether to make them active or not.

Planning Calendar

Fuzible offers you a complete visualization tool of the current week schedules.

| g? SHS Fuzible Data Replicator, Synchronizer

File Configuration Tools Help

-Job Selection ——

GUIZM

Job Configuration

Job Description

Export Job (XML)
Import Job (XML)

Reorganize Jobs

Import Job from another Userspace

Load another Userspace (read-only)

ek Ca

plex WHERE

~Create/manage a Multi-steps Job

Create new Step

iget : Postgre Database

Queries Log Viewer

lendar

By clicking on this menu, Fuzible will generate a simple HTML file of the current week's schedules and display it in

your default browser. This will give you a view of all the scheduled tasks and information on the unfolding of

previous iterations.

Example of a calendar:

Week 51 : 82 record(s)

= Mosday, 14122020

Tuesday, 16122020

Wedsesday, 16122020

Tharsday, 17122020

Friday, 1812

- Job - MOSAIC -> MAIL - Mésrigues DD
[Planit - Tows bss T, 4]
0600 | (Arps s

(St~ Actwve]
{Log : Finshed without enrors - Runaing Tims : £3 sec]

i COMETE >Mouic Mo) s atable e paaing
Tomes beares de G 2 208]

0625 | Grgs. s c2ag
ve)

fLog - Prusbed without exors - Resming Tme 47 sec]

~Job- COMETE > Mossic Mise 8 o de sl d plaming
[Planit Towtes oo de 6 2 208]

{Log : Fiibed withour erors - Runing Time - 43,4 sec]

Iob COMETE > osac s 4w s sble d plaming
{Planié. Tostes heures d & 3 206]

{Log - Fiushed withous rvors - Rusming Time : 47,5 1ec]

- Job - COMETE -> Mosaic. \!nel)cwﬂlhmhﬁvhnnl
[Plant. Towtes bewres da 6k 2 208]
[rze - ressclagy

Acve)
[Log : Fiusbed wihout erors - Rusning Tizme - 46,8 sec]

- Job C‘O’)Eﬁvlhuk Mize 2 jour de la table’
[Planit. - Tostes bewes de &6 2 200]

[Ams ressclagg

St A

|25

3 ALL 80" Srouoismien s Daa Warshonse
"Dl 2 vendrod: chague 28]

06:45 | {Args. SYYYYIMMCINH]
(Stams - Acwve]
[Log - Fiihed without erors - Ranaing Tame

e
s vendrod:

far 'mmum«\wv]

Tos P withous e - Romming T - 24 mia]

b ALL>BD o Dm Narome
2]

o ALL D" Srocroission Do Warbonss
[Plant. chague 28]
e w\'xw-\\'\xx\ua‘l

Starus

[Los Fninhed without erors - Rusming Tie - 2, min.]

I ALL >BD" Srckronion 0
OIMH]
Tow - Find withot s - s Tame

Job ALL >BD7 Srchronisaion & Dea Rere

[Plant. Fred
Az %
fStarws - Acuve)
fors

308 NOSAIC = GLFT > MAIL : Salsris Serts
]

3ob | COMETE -> Mossic | Mise & jour ds I table 6 plasaing
[Planst - Tounes heures de €8 3 208]

S| e it
Actve]

o Pikhad wito e Racing Tise 47 3]

30 COMETE -> Mosalc Mise # jour e 1 tsble de plasming
Tomes heares de €& 2 200]
[Amp. ercdag)

Actve]
| Pt e R T 4]

3ob COMETE > Mossle . Mise 8 jous d L table de plasning
i Tows bewres 61420

Actn
Pohad wiot o - Racaing e 46,

~Jb COMETE -> Mosale . Mise # jour de I tsble de plasning
[Placat. - Toutes heures ds & 3 200]
g g

[Actve)
[Log - Fiished withou evors - Rusnimg Tirse 26,6 sec

Jcb COMETE > Mosale - Mise 8 jour de la tabie
Pt Towes hewes €420

- Job - Comite -> Mail - Invagrt des donntes Comine
[Planat - Tows s jours de a semaioe & Th15]
07115 | {ares

YYvIng

[Stamus - Act
o Pt i s Reming T 373)

-30b - Comite -> Mail Itégrn des dopies Comate
[Placit - Tow I jours de b saesaine a Thi5]
[

A o i Co
[PlanitTost s Jour d a semaice 4 5]
[sy

- oo Comte -> Mail Invapré des doanies Commt
(Placat. - Tost ls jowrs de a semsaine & 7h13]

[Stamus - Acove)
{Log : Finshed withous erors - Ruznimg Tims : 38,4 sec]

ssvyYreny |

rYYens

[Buns - Aceve)
[Pt o s B o 51]

ANTrTHasS e

- Job - BDS->BD? : Exracnon das FAZ - Avowrs
(it Dutumdi 0]
fhm

(St

YYYYIRMCIN]

Job BOS--5D7 Brcacn s FAE - o
[Planit Du luadi su vendradi 3 T30
2 ’-\1“1“-.&\.‘(1\(

~iob BOS>BDT Ermacion ot FAE - Aves

3o BLEU > COMETE - CRM Expon Cheats & Sias
[Plasit - Jours de la sgesaos, chagae ber]

o

(Suams A

(Lo Fimabad s arrs - Racming Tane 36,3 s0c]

e B0~ CONETE SR Ergor Checs S
[Plamt Tours du 1 semacne, chagoe beare
e ed]

S Acve)

Lo - Fished withous srors - Ramming Tims 92 3]

~Job - BLEU > COMETE - CRM Expors Chent & Siss
Tours. chaqoe bean]

[ar prod]

(Stats ~ Acuva]

[Log - Fiisbhed wehout erors - Razaing Tme 9 5oc]

(s geo]
(Stars -~ aceve]
[Log]

- Job | COMETE -> Mossic | Mise # jour de 1 bl de plasamg -30b | COMETE -> Mosslc : Mise #four Ge I tsble de plasaimg > Mossic) COMETE > Mosaic Mse 2 our ds I ble de pazning - Job - COMETE -> Mosale - Mise 8 jour de lasbie
[Planit - Towss heures do 6 204] [Planst. - Toures heares ds @ 208]) Beurss ds &1 208] Plasit.- Tosees beures de 6 8 8] (Planst, - Toutss heures da €2 200]

) [Amp redag] a e oot [Ams rwncdag]

i Acte] [Buaeus dceve] tarus Azt [Stans Acave]
{Log : Finshed without erors - Runming Tume - 48, sec] (Log : Fished without erors - Rumaing Time - 48 sec] o Pt s e e T 487 s fLog:)

Job MOSAIC > COMETE : Expan Salani, Conmen, Avenams
ourt de Ia same, ckagoe hew;

o810 | (are - ess 2ag
[Stams - Actve]

{Log - Fuabed without arrors - Remaing Time 1.2 min]

-Job - MOSAIC -> COMETE : Expon Salanés, Conman, Avenants
[Planst. - Jours de I samaina, chaqoe kesre]

fSuns Acevel
{Log - Fnsshed withous smrors - Ruzning Tirwe - 1,8 mis

ORI S PO Bk M i s
[Planst. aere]

o Pk it s R T 1. i

e
(Status - Acuve]
i1

- Job - BLEU > COMETE - CRM Expors Cheats & Sites
Jous de s semsine, chagae besre]

~Job - BLEU > COMETE - CRM Export Chients & Sitas
[Plasst Jous dela hague beare]

- Job - BLEU -> COMETE cmiwmcnutsm
Jours de a semaive,

-Job - BLEU -> COMETE - CRM! Expont Clieass & Sites
[lanst - Tours e semaine, chaqos ere]

- Iob - BLEU -> COMETE - CRM Export Clinss &
[Plasit Tours de a semsive, chagos hears]

{Log - Finihed without erors - Ruming Tims - 2.3 min]

Actee]
| o - Frushed withous errors - Runnimg Tieme 33 min)

[otamus - Aceve]
{Log : Finshe without ertors - Running Tume - 2.3 min)

Eop - Pichad withous eros - Rumaing Time 123 min]

0820 | fArze - prod] ez [z prod] (A prot)
{Stams - Acuve) {5t - Actve) (St - Acave) o)
TLop Frmsbed wihous evcrs - Ranming Tame 9,2] [Log -Fimibed without erors - Ramning Tiewe 7.2 wc] Lo - Fnushed withous erors - Rasming Time 7 sec] fLos]
~JobBLEU -> COMETE - CRM Expont Cliess & Sies 283 AT A o o XN COM CEM g o 30 6 I > A CEM RO A
[Planit Jours de I semaine, haque besre] [Plant Jouws de [Planitfous de 1 semaies. chague semane, daqus
0335 | rp Lrgs.:prod] G cprod] B wwl
{Staus - Actve] [Stas - Actwe) [Starus - Act S
TLog : Fibad without erers - Ruming Tame 74 sec] [Log - Finished without erors - Ruming Tiene 9.3 sec] Lo Pkt o aors -Rasming T 5.3 sk g Pt e - Rinnog T 3 foe]
Job ALL > BD”_Smchiosissica du Daa Warshowse 3o ALL=BD™ Sn e e— o AL >BY" Snbcnisicn duDua Ruehens ~Job AL > BD" Synchroaisation ds Daa Warsbouse AL S BD Srcaien D e
(Pt Prod - Du landi 20 vendrads chaque 28] ‘Do i a vendreds chague 28] [PlanitProd - Du landi au vendreds chagae 28] [Plaatt Proa mm.-ma.-mm.m [Plat. - Prod - Du I au vendrads chagoe 26]
0345 | (A SYTYVIOORIGHT [Ams WYYV fhm TV TRBH] W TGN fAms \.n’\'\’-.\mmm]
T Ace [[t A Aczve)

fotares
fog:)

-Job - BLEU > COMETE - CRM Expont Cheats & Stas
(Pt - Jours de b samaine, hagoe besre]

28 BB COMKTE Rl eyl & Sl
[Planit - Jours de Ia samsains, chaque bewrs)

o SOMRTES R4 Ry e S
[Plani. - Jours de I semsaive, chaque kears

0SB > COMMTE: CRM B Cho & S
[Plan - Jours de a semaine, chaqy

-Job BLEU -> COMETE - CRM Expont Chients &
[Planit. Tours de 1 semsaine, chaque heare] v

>

Source tab

Here you choose the Source connection. In the case of a database, you can choose to view the list of available BDDs and
use one that is different from the one from the connection string.

] ==

File Configuration Tools Help

GUIZM [34] ALL SCENARIO JOB ~ Create new Step
Job Configuration Target : Excel File Queries Log Viewer
Choose a Source [5] -> Local SQLite File v Edit Connection
Databases A Try Connection and Get Databases
. Smart Data Analyzer 2 0 - No Transformation ~
i ?
Data Scanning Level Analyze each row v ¢
SQlite ~ Parallel Queries Execution 1 ?

O DataReader Mode (slower but uses less RAM. Can also avoid errors with some QDBC drivers)

O Remove data from Source after having been inserted in Target

-~

Perform Post-Job Commands

ave Job (i) Abort Job O simulation Mode () Start Job

Try Connection A quick connexion check

- BDD: checks the connection to the SQL instance and brings back the databases list

- FILE: checks the existence of the path (or (s)ftp) and displays the list of available files
- WEBSERVICE/MAIL: pings the server

- ACTIVE DIRECTORY: checks AD domain availability

Parallel Queries Execution If the Job has multiple queries, you can choose to run multiple queries in parallel.
Beware of the resource consumption associated with these simultaneous executions.
Intelligent Data Analyzer This is the data analysis engine, thanks to it, for example, Fuzible can, among other things, to automatically create SQL tables

that do not exist with the most accurate data types, resulting from data analysis.
If you're dealing with large datasets, the data analysis engine can be resource-consuming,and it's not always useful to analyze
all the data. You can set either scan all the rows or all the X rows.
=>» See "Data Analyzer"
Data Transformation Fuzible can transform source data, like a PIVOT operation would do.
= See "Data Transformation"

BDD

. DataReader Mode (slower but uses less RAM. Can also avoid errors with some QDBC drivers)

O Direct Stream Copy (parallelized read & write data stream)

O Remaove data from Source after having been inserted in Target

DataReader Mode

This is an alternate way of getting Source data. It can be useful with ODBC drivers which sometimes uses buggy drivers.
It’s also less RAM consuming.

Direct Stream Copy

In DataReader mode, data is read row-by-row, it means that they can be transferred to Target by chunks (100 rows by
default, can be set in program configuration / SQL tab). That method is useful as it parallelizes read and write operations,
consumes less RAM, and most of the times, offers great performances.

The downside is that in case of your Job’s Target is a database, and Fuzible is asked to automatically create the target table,
working with small data chunks may prevent the engine to create an accurate data schema. It is advised to use that feature if
the Target Table is already created.

Remove Data from Source
after having been inserted in
Target

If you simply want to transfer Source data to the Target, this option allows you to delete the data that has been retrieved
from the Source. If, however, the Job contains errors during execution, this step will be avoided.
In addition, if the Source query contains multiple tables (joins), it will also be avoided.

MONGODB

Remove internal MongoDB ID column from retrieved data

Remove internal MongoDB ID
column from retrieved data

Each MongoDB collection identifies its records with an ID. This is shown as an additional column when retrieving data.
This option allows you not to get this column

CSV file

Are the files to be processed zipped? (Enter the ZIP filename)

Browse Post-process (Source Files) Nothing v

O Raw Qutput (won't create a dataset, will only extract data in a single column)

Row Offset - Read files starting at row : 0

Read Multiple Files At Once - Name has to contain @

A

-~

Source File(s) are zipped in

If the files you want to query are in a ZIP file, the filename is defined here (its name may be or contain dynamic
parameters)

Post-Process

You choose what you want to do with source files once processed:
1 - Nothing: We leave them where they are.

2 - Move: They are moved in a sub-directory.

3 - Zip: Compact them into a ZIP file.

4- Delete: they are removed.

These 4 options also apply in the case of network path and (S)FTP

Raw Output

Instead of creating datatable from the files content, it is simply extracted "raw", as shown in Notepad (for example)

Row offset

Tells Fuzible from which row he should start to read the file.
= See term "header detection"

Read multiple Files at once

Allows you to indicate a "pattern" for the file name: Fuzible will then get and merge all data from all files with a name
matching that pattern

Excel file

Are the files to be processed zipped? (Enter the ZIP filename) Browse Post-process (Source Files) Nathing M

O Raw Output (won't create a dataset, will only extract data in a single column)

Sheet to Read (0=all) 1
Row Offset - Read files starting at row : 0
Password
Source File(s) are zipped in If the files you want to query are in a ZIP file, the filename is defined here (its name may be or contain dynamic
parameters)
Post-Process You choose what you want to do with source files once processed:

1 - Nothing: We leave them where they are.

2 - Move: They are moved in a sub-directory.

3 - Zip: Compact them into a ZIP file.

4- Delete: they are removed.

These 4 options also apply in the case of network path and (S)FTP

Raw Output Instead of creating datatable from the files content, it is simply extracted "raw", as shown in Notepad (for example)
Row offset Tells Fuzible from which row he should start to read the file.
= See term "header detection"
Sheet to read Tells Fuzible the sheet index data will be retrieved from
Password If the Excel file is password protected, this is where it should be indicated. On the other hand, if you try to write multiple

queries using multiple Excel files, which don't all have the same password, you'll be forced to create multiple Jobs.

XML and JSON Files
XML File v Parallel Queries Execution 3 ?
Are the files to be processed zipped? (Enter the ZIF filename) Browse Post-process (Source Files) Nothing v

O Raw Cutput (will keep data as it was retrieved)

Source File(s) are zipped in If the files you want to query are in a ZIP file, the filename is defined here (its name may be or contain dynamic
parameters)
Post-Process You choose what you want to do with source files once processed:

1 - Nothing: We leave them where they are.

2 - Move: They are moved in a sub-directory.

3 - Zip: Compact them into a ZIP file.

4- Delete: they are removed.

These 4 options also apply in the case of network path and (S)FTP

Raw Output Instead of creating datatable from the files content, it is simply extracted "raw", as shown in Notepad (for example)

Note on head detection
By default (« Raw Output » unchecked), Fuzible analyzes the contents of CSV and EXCEL files on its own and

automatically determinates the presence of a header. Its analysis is based on a set of tests that make it reliable in
99% of cases.

Webservice REST

O Raw Qutput (won't create a dataset, will only extract data in a single column)

$QL Language Fuzible SQL v
Query Method GET v
Body Sent As Raw-JSON ~

API Endpoint (Nuxeo only)

SQL Language Some APIs can use their own simili-SQL language that can be used instead of "Fuzible SQL", which is the default
engine. For example, the Salesforce CRM uses SoQL

Method

Data retrieval method: GET or POST

Body Sent As You can send some body content in your queries to an API. Here you specify what kind of body it is: Form-Data,
JSON, XML
Raw output The responses returned by the API will be extracted « raw », the content won’t be serialized as data table(s).

Note that depending on the connection "template" you choose (connection configuration), you may have a slightly
different setting; for example, if you use the Salesforce SoQL "template", the settings are automatically set for you:

Rest API v

SQL Language SoQL (Salesforce)

O Raw Output (will keep data as it was retrieved)

Parallel Queries Execution 1 ?

Mailbox

Get Unread Messages Only (IMAP)
Post-Operation Nothing

Limit to retrieve 100

Get unread messages only

Chooses to retrieve only emails that have not yet been read (IMAP only)

Post-Operation

Defines what you do with the email after Fuzible read it.
- Leave it as itis.
- Move it to a "Fuzible" folder
- Delete it.
- Mark it “as read”.
Note: The POP protocol only supports deletion.

Limit to retrieve

By default, the program recovers all the mails from the inbox, which can take an extremely long time. It is best to set
a limit here.

Active Directory

Search Scope Base

Search scope Search depth for AD objects (base, one level, all levels)

Data Analyzer

. Intelligent Data Analyzer

w5l

Data Scanning Level Analyze each row

| Analyze each row

Amalyze every 5 rows

Amnalyze every 10 rows
Advanced Parameters
Analyze every 20 rows

Fuzible may need to analyze the data it collects to determinate the most accurate type. This feature is
particularly useful in 2 cases:

- The target is a database and the Target table do not exist or has an inaccurate schema: Fuzible can either
create them or "improve" them if requested (change the field type(s))

- Sync mode: To best compare Target and Source data that sometimes come from quite different sources, the
analysis helps to better translate a value.

- Filtering and aggregating data from Sources other than a database

To date, Fuzible is capable of creating and/or transcoding the most standard fields: CHAR, NVARCHAR, VARCHAR,
TEXT, DATE, DATETIME, TIMESTAMP, INTEGER, DECIMAL (X,X), FLOAT, BIGINT, SMALLINT, BIT. Any other type of field
will be seen as a "TEXT" field.

The lower the accuracy requested by the analyzer (scan all X lines), the more it will weight its analysis to ensure that
the import is done correctly.

Example: A field identified VARCHAR(5) will be created in VARCHAR(10) in the target if the scan mode scans only all
50 lines)

Note: For all queries retrieving less than 100,000 rows, the analyzer scans all rows, regardless of the chosen setting.

Data Transformation

The collected data can be completely transformed before its integration into the Target:

0 - No Transformation

0 - No Transformation

- Hyperfile Arrays to Rows
- Pivot By Common Roatis)

W

- Switch Rows and Columns

Hyperfile Arrays Transformation:

Data Transformation 1 - HyperFile Arrays To Rows &

Avoid Transformation if Viariable Arrays Sizes are Detected

This is a kind of transformation specific to Hyperfile databases: some fields of this SGBD are in fact
arrays, and when these arrays are retrieved by the ODBC driver, it produces as many columns as there are
columns in these fields of "array" type (example: PPXRUBP_01, PPXRUBP_02, PPXRUBP_03...)
Transformation automatically analyzes and counts all columns of this type (they always have the name of the
field, followed by _XX) and flips them so that there is only one, and the data is thus transformed into rows
and no longer columns.

Example: If you have na array-type column of 50 entried in HYPERFILE, the ODBC sends you 50 different
fields! The transformation engine retains only one to favor a better display of this data (i.e. 50 rows for one
originally)

Example: on the right, the initial data source, on the left, the result produced by the transformation:

id_sample;data 0l:data 0Z;data 03:data 04:;1i_sample d_sample | dam | li_sample | IDX_COL
l:hellol;hellos;hellaizhellod: £iratrom
2:worldl pworldZ;world3;worldd; gecondrow
Jpwolfl walfl walfsmalfd thivdrow

hellal |firstrow

hello? |firstrow

helle3 |firstrow

hellod |firstrow

[R X

world1 | secondrow

wiord2 | secondrow
wiarkd3 | sacondrow
wiarkd4 | sacondrow
wiolfl | thirdrow
wiolf2 | thirdrow
wiolf3 | thirdrow
wiolf4 | thirdrow

e e | e e | e | e | | | e

[Fr]))))) () Y SR S S

As can be seen, the fields data_01, data_02,... follow a "label + number" logic, which allows you to take
"data" as a label, and to display the index in "IDX_COL"

Pivot by Common Root:

Data Transformation 2 - Pivot By Common Root(s)

Avold Transfermation if Viariable Arrays Sizes are Detected

This kind of transformation reverses source data according to a common root field name. For example, if

you put "x," the program will flip all the fields that start with "x."

To this end, the source will be increased by 3 fields:
o An"x" field, containing the value.
o A"x_lbl" field, containing the rest of the fields name (ex: « x_001 » -> 001)
o A"x_idx" field containing the row index

If 7 fields with the "x" root have been detected, then 7 rows will be produced. These fields will of course be

removed from the source and replaced by the 3 fields shown above.

Example: on the right, the initial source data, in the middle, the query, on the left, the result produced by the

transformation:

Data Transformation 2 - Pivot By Common Roobs) s~ | split
1 id_sample;datall;dataX¥;data¥;dataZ;li_sample TRANSFORMED.CSV:select id_sample, li_sample, d_sample | li_szmple | split | splic_tbl | split_ice
Z lrhellol:helloZ;hello3:hellod:firstrow i

3z ; l:u- ; 1:12- ; 1:13- ; 134- dataW as splito1, 1 Frswrow | hellot | 01 1

FWOE Holi FWor JWOr rzecondrow dataX as splito2 1 Frsrow | helloz | 02 3

4 Frwolfl;wolfzZwolf3;wolfd;thirdrow ! 1 firstrow | hello3 | 03 3

5 data¥Y as splitd3, 1 frsrow | hellod | 04 4

dataZ as 5p|itﬂ4 2 secondrow |worldl | 01 1

2 secondrow | worldZ | 02 2

from TRANSFORM_CR.CSV 2 secondrow | world3 | 03 3

2 secondrow [worldé | 04 4

3 thirdrow [wolft |01 1

3 thirdrow [wolf2 | 02 2

3 thirdrow | wolf2 | 03 3

3 thirdrow [wolf4 | 04 4

We see that the fields "W,X,Y,Z" were deliberately renamed with a common root in the query.
- "split": the root name
- "split_Ibl": the data that was contained in the column

-"split_idx": the original column index

Switch Rows and Columns:

Data Transformation 3 - Switch Rows And Columns
rd

Add a Column With Labe [3F{CF'EF1TIES:;

Simply flips the columns into rows and vice versa.
The "Add a column with label (PROPERTIES) option allows you to add a column with the original name of the
original column associated with the reversed data.

Example: on the right, the initial source, in the middle, the query, on the left, the result produced by the
transformation:

id_sample;datall;data¥;data¥;dataZ;li_sample TRANSFORMED.CSV:select id_sample, dataW, dataX oot | ooz | R oo

1:;hellol:helloZ:hello3:hellod; firstrog from TRANSEORM RC.CSV

Z;yorldl;worldé;world3;worldd;:zecondron ellol | warkdl | wolfl
h = .

3ywolfliwolE2;wolf3 wolEd; thirdrow

hello2 [world2 | wolf2

[, B VI

... and with the "PROPERTIES" option

Data Transformation 3 - Switch Rows And Columns »
?

@ ~dd a Column With Label (PROPERTIES)
1 id sawmple;dataWl;data¥;data¥;dataZ;li_sample TRANSFORMED.CSV:select id_sample, dataWw, dataX PROPERTIES | R_001 | R_ooz | R_oo3
Z l;hellol;helloZ;hello3zhellod;firstron from TRANSFORM RC.CSV =" 1 7 3
3 Z;worldl;worldZ;world3:worldd;gecondrow - e - hallol | workdt |walfL
4 3rwolfl:wolfZ;wolf3;wolfd:rhirdrow datal hello2 | world2 | weolf2
5

If Any, also transform Cross-Queries

If a Query is built with Cross-Queries (data coming from other Sources), the Transformation will only be
executed on the Main Query, then all Data coming from Cross-Queries won’t be transformed but merged with the
already transformed Data from the Main Query. You can choose to Transform any Dataset that is collected through
all Cross-Queries which means that Cross-Query behavior will be executed on full transformed datasets. Not only the
main one.

2 - Pivot By Common Root{s) W

=

O Avoid Transformation if Variable Arrays are Detected

. If Any;, also Transform Cross-Queries

Pre/Post-Job Commands

Accessible from the "Source" tab and the "Target" tab, for "Database" or "File" connections. This feature is an
answer for two identified needs:

- Sometimes a simple data copy Job is not enough, you need to launch something before or after this copy,
and you want to avoid having to program these scenarios in an external Orchestration software.

- You want to retrieve some data before starting the Job to exploit it (conditioning the behavior of the job
according to this data, for example)

This feature allows you to launch one or more commands before or after the Job is executed.

File

Perform Post-Job Commands v | DATE /T ?

Any command you could launch from the Windows shell is supported. If multiple commands are to be
launched, they must be separated by a ";"

Ex : c:\Tools\mycommand.bat
Ex2 : DATE /T (returns the actual date)
Fuzible adds any returned value/message/error from those commands into its LOG.

Database

Perform Post-Job Commands v SELECT LAST(dt_import) FROM MY_IMPORTS; ?

Any SQL command compatible with the selected SGBD. The execution of a stored procedure, an UPDATE... If
multiple commands are to be launched, they must be separated by a ;"

Ex : UPDATE myTable SET sent = 1 WHERE month = {%MM}
Ex2 : EXECUTE myProcedure(‘1’)

In example 1, you see, as a reminder, that a dynamic parameter of the Job can be used.

These commands can return a value. Fuzible can exploit these values as dynamic parameters. For example, if | write
in the dynamic settings of Job %CS1, it means that this dynamic setting will be replaced by the first value of the first
command of the "Source" connection:

C - Command
S - Source
1 - Command No.1

We can also write %CT1 (Command Target No. 1) or %CT2...

Looped Pre-Job Commands

You may notice that if only one Pre-Job command has been set, an option appears. "Loop Job for each
Result ».

This option allows you to make the Job scenario more complex by associating a dynamic parameter to the result of a
command, which, if it returns several rows, allows you to loop the Job as many times as there are results, assigning a
different dynamic parameter each time.

Explanations :

You call a stored procedure "getMails" (CALL is the MySQL syntax for calling a stored procedure)

Loop Job 2

Perfarm Pre-Job Commands v | CALL geMails; . for each result

... Which returns this data set:

mailField IdPeople Comment
Leon@mymail.com 1 Our beautiful CEO
Arthur@mymail.com 2 Our incredible COO
Samantha@mymail.com 3 Our amazing CTO

You might want to send an email to each of these people, with an email containing, for example, their information
summary.

This option makes it possible to carry out this scenario, provided that you program the Job accordingly.

In this case, one or more dynamic parameters must be assigned to the results produced by the call to the stored
procedure (or any other command returning a set of results).

For example, a single variable can be associated in the following way ("Job Configuration" Tab):

) 9%SCT;
Dynamic Parameters

Or more than one, by specifying the column number (in base 1) to which the parameter is associated:

) %SC1[1} %SC1[2]
Dynamic Parameters

mailto:Leon@mymail.com
mailto:Arthur@mymail.com

You can then set a Query which, for each mail returned by the stored procedure, will send a mail to the person in
guestion, with his personal information:

Sandbox

& Query must start with the table name in which data will be written in (will be created if non-existent).
ex : MyTable:SELECT (.)

{21 }:select * from peopleData where idPeaple = {22}

{ 21} -> Will be replaced by the dynamic parameter N°1, which is filled with the data of the first column of the stored
procedure, i.e. the person's email.

{ 22} -> Will be replaced by the dynamic parameter N°2, which is filled with the data of the second column of the
stored procedure, i.e. the ID of the person.

Thus, the Job will run in a loop until the result set of the stored procedure called in Pre-Job has been consumed.

In our example, the Job will run 3 times, with the following values

Itération Param. Dynamique 1 Param. Dynamique 2
Premiére itération {?1} =>%CS1[1] => Leon@mymail.com {?2} =>%CS1[2] =>1
Deuxiéme itération {?1}=> %CS1[1] => Arthur@mymail.com {?2} =>%CS1[2] =>2
Troisieme itération {?1}=> %CS1[1] => Samantha@mymail.com {?2}=>%CS1[2]=>3

With this option, it is therefore possible to make your job a little more scenic and dynamic.

Restriction: Only one pre-job command can be entered for this option to be available

Furthermore, if it has been activated on the "Source" tab, it cannot be activated on the "Target" tab (and vice versa),
even if a pre-Job command has been entered. This is to avoid making the Job too confusing and to avoid scenarios
that require a more visual presentation of the Job's behavior (in the form of a diagram, for example)

mailto:Leon@mymail.com
mailto:Arthur@mymail.com
mailto:Samantha@mymail.com

Target tab

Here you choose the Target connection. In the case of a database, you can choose to view the list of available databases
and use one that is different from the one in the connection string.

& =
File Configuration Tools Help
GUIZM [65] BIG Data Perf Tests ~ Create new Step
Source : CSV File Queries Log Viewer
Choose a Target [17] -= Local SQLlite File BIG “ Edit Connection
Databases b Try Connection and Get Databases
SQlite hd . Trim Data (Left, Right) Parallel insertion 1 ?
Target table behavior Drop + Recreate ~ . If non-existent, create table(s) automatically
O If Target Table has to be created, try to find and add a Primary Key ? (can analyze up to 5 fields - may take a lot of time)
O Allow Schema Alteration in Target (ie : when trying to insert a 10-char value in a VARCHAR(S) column)
O Disable Constraints when inserting/updating/deleting data (faster but requires sufficient privileges)
. Insert NULL instead of empty values
Perform Post-Job Commands ?
ave Job @Abort Job O simulation Mode @StadJob

Common settings to all targets:

. Add a Row Count Column in Target : ROWNUM . Add a Column with Source DB/Path in Target: DBNAME

. Add a Timestamp Column in Target : DTLOAD Al-jd e ot
with dynamic param(s) MYCOLUMN={?1}
ex: MYCOLUMN={?1}

All of the following special columns use a default name that can be changed by the user.

Add a row count column in target Adds a "ROWNUM" column to the data retrieved from the source, which is simply a row counter

Add a timestamp column in target Adds a "DTLOAD" column to the data retrieved from the source that contains the data retrieval date

Add a column with source database/path | Adds a "DBNAME" column to the data retrieved from the source that contains the source of that data

Add a column with a dynamic param Adds one or more optional columns to the data retrieved from the Source (ex:, MYCOLUMN={ ?1} : will add a

"MYCOLUMN" column and fill in its data with the dynamic setting n°1
It is possible to add several columns by separating them like this:
MYCOLUMN1={ ?1} ;MYCOLUMN2="test’

Postgres A4 . Trim Data (Left, Right) Parallel insertion 1

Trim data

Removes any whitespace before and after a string

Parallel Insertion

Option available only in "TARGET = Database" mode: It allows you to perform the INSERT, UPDATE, DELETE
operations in multi-thread: Requires a high-performance Target database, especially if you combine parallel
insertion with parallel queries execution (Source tab)!

Database

Target table behavior Truncate M . If non-existent, create table(s) automatically

. Bulk Insert (very fast, but less reliable if Source Data needs some transcoding to be properly inserted in Target)

O If Target Table has to be created, try to find and add a Primary Key ? (can analyze up to 5 fields - may take a lot of time)

O Allow Schema Alteration in Target (ie : when trying to insert a 10-char value in a VARCHAR(5) column)

O Disable Constraints when inserting/updating/deleting data (faster but requires sufficient privileges)

. Insert NULL instead of empty values

Target Tables Behavior

Available in "Data Replication" mode: Defines what to do on the target table when you fill it out.

Target Takles Behavior Truncate v

Allow 2 h S Drop + Recreate
ow Add+Change Type Co B
- 9= P Truncate

Disable Constraints (requires| Full Delete
Partial Delete (using Query (Where Condition|
Partial Delete (using Dynamic Param Column(

@ set NULL for Empty Valus Nothing

1- Drop - Recreate: delete the destination table and then rebuild it.
2 - Truncate: delete all data from the table using a "TRUNCATE" statement.
3 - Full Delete: delete all data from the table using a "DELETE" statement.
4 - Partial Delete using Query (Where): will use the "WHERE" filter(s) from the source query to remove data with the
same filter in the destination table.
Ex : MYTARGET :SELECT * FROM MYSOURCE WHERE id > 50
= Fuzible will remove all "id > 50" in "MYTARGET" before inserting new data
5 - Partial Delete using Dynamic Param Column: Will use the dynamic column as a filter
Ex : If you set an additional column MYCOLUMN={ ?1} with { ?1} using ‘TEST’ as a value, the DELETE FROM
myTargetTable WHERE MYCOLUMN = ‘TEST’ statement will be performed before inserting new data.
6 — Nothing : Nothing will be done before inserting new data.

Bulk Insert

This is a very fast way of copying data into the Target Database. While it offers amazing performances, it is sometimes
less reliable than traditional transactional SQL, especially when data needs to be converted on the fly between Source
and Target.

If non-existent, create table(s)
automatically

By default, if the Target table does not exists, Fuzible will automatically create it on-the-fly with the most accurate
data schema. You can bypass this behavior. If the Target table does not exists, an error will be inserted in the LOG

Allow add+change type columns in
target

Allows Fuzible, thanks to its data analysis engine, to modify the target table schema if necessary (change of column
types). Requires significant privileges on the target database. This is especially useful if Source data is often changing
and Target table needs to be adjusted accordingly

Disable constraints

Allows insertions to be performed by disabling foreign key constraints.
Requires significant privileges on the target database.

Try to add primary key

If the target table does not have a primary key, Fuzible can create it on its own by analyzing all possible combinations
of fields and values. The analysis is limited to a maximum of 5 fields. If the number of fields and data is huge, the scan
can last an extremely long time and it is not advisable to use this feature.

Also requires important privileges on the target database.

Set NULL for empty values

All "empty" data in the Source can be replaced as a "NULL" value in the Target data

CSV file

Rows / created file : 1000000

CSV separator H

Help for scripting multiple output filenames

? O If exists, append output file(s)

. Add header row (using Source query fields -or aliases- names)

O Embrace values with double-quotes (ie : "Value1";"Value2";"Value3™)

Rows/ File

How many rows you want to copy into a single file?
If the number of rows in the Source data exceeds this value, a "pattern" must be set to name the files that are going
to be created.

=>» See "Multiple files naming pattern"

Append Existing File

If the target file already has rows, you can decide not to overwrite it but add data into it.

CSV separator

Sets the separator character of the target file

Add header row

The header is built using Source field names

Embrace values with double quotes

Double quotes will be added before and after the value (ex : “test”;“125“;“hello”)

Excel file

Rows / created file 1000000

Set password

Help for scripting multiple output filenames ? O If exists, append output file(s)

Visual Style: | None v

. Add header row (using Source query fields -or aliases- names)

O Add a Title Row (using 'Job Description’)

Rows/ File

How many rows you want to copy into a single file?
If the number of rows in the Source data exceeds this value, a "pattern" must be set to name the files that are going
to be created.

= See "Multiple files naming pattern"

Append Existing File

If the target file already has rows, you can decide not to overwrite it but add data into it.

Set password

Sets a password on the Excel file

Add header row

The header is built using Source field names

Add a title Row

Adds a general head row, the value will be the Job’s description

Style Allows you to pick-up a graphical style.

File XML
Rows / created file : 1000000 = Help for scripting multiple output filenames ? O If exists, append output file(s)
Header Row: | xml version="1.0" Row Tag script builder Row ?
Write Mode : Mode 1: Fields -> Tag (i.e : <MyField>myvalue</MyField>) v

O Don't create Tag for empty values

O Add CDATA for all values (ie : <![CDATA[<sender>John Smith</sender=>]]>

Rows/ File

If the number of rows in the Source data exceeds this value, a "pattern" must be set to name the files that are going
to be created.
= See "Multiple files naming pattern"

Append Existing File

If the target file already has rows, you can decide not to overwrite it but add data into it.

Header

Choose the XML header (usually: xml version="1.0")

Write Mode

Choose the way you want to build the XML schema :
= Mode 1: Each row is written inside a main row tag (Row Tag Script Builder), each field is a sub-tag, and
contains the associated value
Ex : <Row><MyField>myValue</MyField><MyField2>myValue2</MyField2></Row>
=>» Mode 2 : Each row is a row from the Source, each value is an attribute (field name).
Ex : <Row MyField= "myValue" MyField2="myValue2"/>

Add CDATA tag for each value

(Mode 1 only) If the source contains exotic values, the standard tag "CDATA" allows the data to be framed so that an
XML interpretation engine understands that the values framed by this tag contain special characters

Don't create tag for empty value

If a value is empty, lets tell if you still want to generate an empty tag in the output file

Row Tag script builder

Sets a behavior script for the tag of each row.
=>» See "Tag Builder"

File JSON

Rows / File 10000 Append existing file Help for multiple files output scripting ?
Row Tag script builder [JOBNAME] ?
Rows/ File If the number of rows in the Source data exceeds this value, a "pattern" must be set to name the files that are going

to be created.
= See "Multiple files naming pattern"

Append Existing File

If the target file already has rows, you can decide not to overwrite it but add data into it.

Row Tag script builder

Sets a behavior script for the tag of each row.
=> See "Tag Builder"

TAG BUILDER

By default, the structure of an XML and JSON file produced by Fuzible:

Job Queries Sandbox

[31myfile.xmli[4]myfile.json:select * from sample_table_1 it3

The JSON file will be as follows:

8,

S
"five”,
ate™: "14/09/2

"id sample™: &6,

"six-six",

";d:ssg:o:p" = "an1=
o }

... and the XML file:

<2xml version='1.0'2>
%<sample_r_able_l>
] <Row>
<id_sample>5</id_sample>
<1i_sample>five</li sample>

<id_group>005</id_group>
<id_ssgroup>000</id_ssgroup>
r </Row>

=] <Row>

<id_sample>28</id_sample>

<id_group>008</id_group>
<id_ssgroup>003</id_ssgroup>

r </Row>

=] <Row>

<id sample>66</id_ sample>
<1i_sample>six-six</1i_sample>

<id_group>006</id_group>
<1d_ssgroup>uul</1d_ssgroup>
I </Row>

“</sample_table_1>

<1i_sample>two-eight</li_ sample>

<dt_random date>18/10/2020 13:10:49</dt_random date>
<nb_random number>13</nb_random number>
<1i_random_string>ysisszfpzpcmohdx</li_ random string>

Py
: "ysisszfpzpcmohdx",

=]
S
"two-eight",
ate™: "18/10/2020 13:10:49",
":.d:ssg:o:;p": "oo3"
F Y,
=) {

"15/01/2021 13:10:49",

56,
: "inpljrzhwvkmvmfb",

<dt_random date>14/09/2020 13:10:49</dt_random date>
<nb_random number>25</nb_random number:>
<1i_random string>iidbknotshgpzijf</li_random string>

<dt_random date>15/01/2021 13:10:49</dt_random date>
<nb_random number>56</nb_random number>
<1li_random string>inplj rzhwvkmvmfb</ 1i_random_string>

The main tag uses the name of the input table (the first if the query contains joins)

Now, if | want to change the main XML tag, | just need to ask an alias in my query:

Job Queries Sandbox

[3]myfile.xmi[4]myfile.json:select * from sample_table_1 as sampleTag

"SampleTag" is the alias that will be used in the XML body

<2xml version='1.0'2>
<sampleTag>
<Row>
<id_sample>5</id_sample>
<1i_sample>five</1i sample>
<dt_random date>14/09/2020 13:10:49</dt_random date>
<nb_random number>25</nb_random number>
<1i_random string>iidbknotshgpzijf</1i_random string>
<id_group>005</id_group>
<1d_ssgroup>DDD</id_ssg:oup>
</Row>

Supported keywords:

e [JOBNAME]

e [DATETIME]

e [ROWCOUNT]
e [FILECOUNT]
e [USER]

e [anyField]

I will set the script in the "Target" menu:

Rows / File 1000 Append existing file
Header xml version="1.0"
Row Tag script builder CurrentiD=[id_sample] 2

Help for multiple files output scripting

Don't create Tag for empty values

Add CDATA Tag for each value

The JSON file creates:

r
"five",
"dt_random date": "14/09/2020 13:10:49",
"nb_random : 25

g dom

: ’
g": "iidbknotshgpzijif",

"ld_r;:aup"
"1d:ssg:w up”: "00O"
r
=] {
"id sample": 28,

"two-eight",

: "18/10/2020 13:10:49",
13,

: "ysisszfpzpcmohdx",

5%,

"six-six",

ate™: "15/01/2021 13:10:49",
=L

"inpljrzhwvkmvmfb",

T "oo6",

: "ooim

The

... and the XML file:

<dt_: £>14/09/2020 13:10:49</dt_random_date>
<nb number>25</nb_random number>

. string>iidbknotshgpzijf</1i_random string>
>005</id_group>

ssgroup>000</id_ssgroup>

</CurrentI >

<id_sample>5</id sample>
<1i_sample>five</li_sample>
=)

= <CurrentIl >
id_sample>28</id_sample>

<1i_sample>two-eight< /ll_san‘.ple >

date>18/10/2020 13:10:49</dt_random date>
number>13</nb_random number>
random_string>ysisszfpzpcmohdx</1li random string>
08</id_group>

>003</id_ssgroup>

</CurrentI
Current
<id_sample>66</id_sample>

1}

<1li sample>six-six</1i_sample>
dc_: date>15/01/2021 13:10:49</dt_random date>
< 5} r>56</nb_random number>

<1i : _string>inpljrzhwvkmvmfb</1li random string>
<id_gre >006</1id_group>
<id_ssgroup>001</id_ssgroup>

</Cur tID=66>

L</sampleTag>

MULTIPLE FILES NAMING PATTERN

When using a File Connection as the Target, you can decide to split the result into several files from a number of rows.
For example, if the Source data contains 1000 rows, you can split the result into a single file containing 1000 rows, or 5 files of
200 rows each, or 1000 files of 1 row each.

This multi-file pattern can be smartly configured from the “Queries” tab (see below)

[QUERYALIAS] Alias from the first source table of the query

Ex : MYFILE_[QUERYALIAS].CSV : SELECT * FROM MYTABLE AS MYQUERY

Gives : MYFILE_MYQUERY.CSV

[FILECOUNT] File counter: returns the number of files created.

If the program has already created 3 files, it will return "4" to the next [FILECOUNT] pattern.

Ex : MYFILE_[FILECOUNT].CSV : SELECT * FROM MYTABLE

Gives : MYFILE_1.CSV, MYFILE_2.CSV...

[ROWCOUNT] Row counter: returns the source query row number to the start of the file.

If we define a file change every 1000 rows, at the creation of the 2" file, the software will return
1001 (to the 3rd file, 2001)

Ex : MYFILE_[ROWCOUNT].CSV : SELECT * FROM MYTABLE

Gives : MYFILE_1.CSV, MYFILE_1001.CSV...

[COLUMN] Returns the value from a field when the new file is created

If the value of the "my_field" field is "Hello" at the time of the creation of the new file, then "World"
when the next one is created, the engine will return "Hello" and so on.

EX : MYFILE_[myField].CSV : SELECT myField FROM MYTABLE

Gives : MYFILE_Hello.CSV, MYFILE_World.CSV...

What you can do:

- Use those keywords in any order.

- Use them multiple times.

- [COLONNE] can be used several times, with several different columns (make sure the column exists in the source, if any,
the name of the column is returned and not its value!)

- Intersperse characters between each keyword (ex: [FILECOUNT]-_-[ROWCOUNT])

Restriction:

- The special characters will be automatically replaced with a

Some examples:
Postulate: Source produced 2000 rows and we want to have 1000 rows/file. Filename = TEST, The output file is a CSV.

2 files will be created:

hello[ROWCOUNT]world[NOM_CLIENT].CSV : SELECT ... - helloOworldFNAC.CSV
- hello1001worldAUCHAN.CSV
Hello[FILECOUNT]_[ID_CLIENT] .CSV : SELECT ... - Hellol_283.CSV
- Hello2_81036.CSV
[QUERYTARGETNAME][ROWCOUNT][FILECOUNT] .CSV : - TEST11.CSV
SELECT ... - TEST10012.CSV
[QUERYTARGETNAME]%S&£[FILECOUNT] .CSV : SELECT ... - TEST___1.CSV
- TEST__2.CSV
Webservice REST/NUXEOQO
Server Responses
. Save Server Responses in Source -> Table/File name (As per Source, auto-create) : myWSanswers
String pattern in API responses that can be interpreted as a success (ie : <result=0K</result>) : <result>0K</result>
Add some Source column(s) to server responses (ie : myField1;myField2) : mylDcolumn
Call method POST v Source data will be processed as Build JSON Body from data N
O Format URL with upper chars O Don't send empty values Source Data offset - Process data starting at field : 0
Save HTTP responses in source Webservices usually generate answers (XML, JSON) that Fuzible can retrieve and integrate into the connection that
served as Source (ifit's a BDD, in a table, if it's another connection, in files)
Table Log/File Name (Optional) table name (or file) that will receive answers from the queries made to the API

Track source column(s) in responses | (Optional) If your Source query contains 100 rows, it means there will be 100 calls to the API, and it is not easy to find
your way around the list of answers it will deliver. You can define one or more fields from the source to be kept and
stored in the answers table/file to track down the calls.

String that says success in WS If you know the answer format of n API, you can set a "piece of content" of these answers that identifies the call as
Answers having been a success. If this piece of string is not in the answer, Fuzible will produce a "WARNING" in the LOG
Format URL with upper chars Compatibility mode: Some API for which data is sent as HTTP parameters only accept capital-formatted URLs
Don’t Send Empty Values When building the HTTP query, Fuzible will avoid adding fields with empty data
Call Method Call method supported by the API (POST, PUT, DELETE, PATCH)
Call method POST v

POST

PUT

DELETE

PATCH
Content Type Determines how the content of the source data will be sent to the webservice. Either in the form of JSON or XML

data in the body, as HTTP parameters or in "raw" mode (when your source file is a raw JSON file for example)
Content type Raw Text v

Build HTTP Query from data

Build JSON Body from data

Build XML Body from data
Raw Text

Columns send offset A query to an HTTP webservice builds a concatened chain of fields and their values. However, if the source query
returns for example 10 fields, you can decide to send only the last 8 in the API if you set an offset of 2

Mailbox

O Assemble queries with same recipient in a single mail

Data Presentation HTML table in mail body v
Use an HTML template file : CiAUsers\Public\Documents\Fuzible\FILES\modeleMail. html
Keyword Identifier that will be replaced by Query Results (formatted as an HTML table) TABLE_DATA ?
Assemble queries with same If the Job has multiple queries with the same email address as the Target, you can decide to group all the results
recipient in one mail into one email rather than send 1 mail / query.
Data Presentation Here, we choose how the Source data will be presented in the email:

- HTML table in mail body: an HTML table in the body of the mail

- Excel file with (or without) a header: an attachment in Excel format

- CSV file with (or without) a header: an attachment in CSV format
Note: If the table contains too many rows (to be set in the software configuration), and one has chosen "HTML
table", it is a CSV attachment that will be attached to the mail rather than a table in the body
Note 2: The name of the table in HTML table mode will match the alias of the first table of the query.
Ex : SELECT * FROM MYTABLE -> MyTable will be the table header
Ex2 : SELECT * FROM MYTABLE as My_Reporting -> My Reporting will be the table header (any underscore will be
replaced by a whitespace as well)

Use an HTML Template file Is showned only if you choosed « HTML table in mail body »

Fuzible creates HTML content using data retrieved from Source Queries. The default Template is quite simple, that's
why you can choose a customized one.

In that case, Fuzible needs to know where to include the Source Query data into that Template. This is where the
Keyword option stands for :

1/ If no keyword is specified, Fuzible will behave like this :

It will take the Query Alias (ie : mymail@mail.com:select * from myCustomers as MyAlias) and try to find it in the
HTML Template.

- If found (in the example, MyAlias), it will be replaced by the HTML code that has been produced from Query
results.

- If not found, the results will be concatenated to the Template HTML code.

2/ If a keyword has been specified :
- Fuzible will replace that keyword by the HTML code that has been produced from Query results.
- If the keyword has not been found into the Template, the results will be concatenated to the Template HTML code.

3/ Special case when using "Assemble Queries with same Recipient in a single mail"

If you have multiple queries that will be merged in a single mail, the Template can be populated smartly.

- Your Template uses a keyword (ie : MYTABLEO1) that is intended to handle results from the first Query

- Your Templace uses another keyword (ie : MYTABLEQ2) that is intended to handle results from the second Query
->You can set your Queries like this :

- MyMail@mail.com:SELECT * FROM MyCustomers as MYTABLEO1 WHERE last_transaction = CURRENT_TIMESTAMP
- MyMail@mail.com:SELECT * FROM MySuppliers as MYTABLEO2 WHERE last_transaction = CURRENT_TIMESTEMP

Results from 'MyCustomers' Query will be injected into the Template by replacing 'MYTABLEO1' keyword.
Results from 'MySuppliers' Query will be injected into the Template by replacing 'MYTABLEO2' keyword.

Practical note: if you have injected dynamic parameters recognized by Fuzible in your HTML Template (e.g.: {?1}),
these will be replaced by the dynamic values of the Job!

Keyword Identifier The optional Keyword included in the Template that will be replaced by the HTML table

Note: The mail subject will be the description of the Job

Active Directory

Key Attribute (Primary Key. name
Existing Objects : Remove v

O Activate created Entries

Key Property Sets the unique property that identifies an object in the AD (for example, "name" is the default single property for a user
account)
Existing Objects Chooses how to behave when writing an AD object:

- Remove: It is removed for re-creation

- Ignore: Leave the object as it is, without overwriting it
Note: In "Data Synchronization" mode, this option is disabled because data is compared, so inputs will be updated, inserted
or deleted depending on the mode of sync chosen in the main settings of the Job

Activate New Entries When a new entry is created, it will not be activated by default. You can force its activation by checking this box

Queries tab

The heart of Fuzible is here. As the software is an IN/OUT reader/writer, a Data Source is no more than a
group of fields and with values.

The software aims to greatly simplify the tedious work of mapping and transforming data. It uses the principle of SQL
queries to work.

In case the source is an SGBD, no problem, it is the SQL language of the SGBD that will work, you can enter any query
(simple or complex) compatible with it to extract data.

In all other cases, Fuzible relies on the standard SQL language (SQL92 compatible): The queries you write are
translated and applied to the type of Source you are querying.

The sub-menu reminds you of the SQL language you are using when building your queries.

Job Configuration Source : MySQL/MariaDB Database Target : SQL Server Database Log Viewer

Sandbox

with the table name in which data will be written in {will be created if non-existent)

Show me an exemple

Each query for a Job is written as such: OUTPUT:SELECT [...]

If you click right over the query when it is empty, you'll be proposed a demo Query if you're not familiar with how it
works. If the Source is a database or a file, you will be asked to perform a full Replication of everything that is
available:

Sandbox

Full Replication ?

Would you like to perform a full path (available files) replication ?

This will produce the following result (in the example, my Source connection is a local path containing CSV files):

Sandbox
*:SELECT * FROM *.CSV

If you don’t want a full replication, a demo Query will be added:

Sandbox

ReplaceBy_AnySQLTable:SELECT * FROM sample.csv

Now let us see how to write a query manually, since all the interest is there!

Output

BDD Destination table name

A Qwery must start with the table name in which data will be written in (will be created if non-sxistent).
2% : MyTable:SELECT ()

AX_f_fae_avoirs:select = from (SELECT T1.RECID ASid_ecriture,
CAST(T1.ACCOUNTINGCURRENCYAMOUNT AS numeric(12,3)) A$ nb_montant,
CAST(LEFT{CONVERT(varchar, T2.ACCOUNTINGDATE,112),6) AS INTEGER) ASid_anneemois,

FICHIER Destination filename

A Query must start with the filename in which data will be written in.
2 : MyFile. CSWSELECT ()

CLI_[CLI_code] {2 YYYY%MM%%DD%HH%mm%SS} XML select * from cli_viewcli_export_comete as dients
SIT_[SIT_code]_{% YYYY2oMM% DD% HH % mm %55} XML:select * from cli_viewsit_export_comete as sites

Note: In the example, the name of the output file is dynamic!

MAIL The recipient's email address. It is possible to define several by putting a ;" between each!

A Query must start with the mail addressies) for which you want to send data to (addresses have to be separated by a).
= 2 mymail @gmailoorn anymail @yahoo frSELECT (L)

mymail@hotmail.com:select * from (select snp.id_matricule asMatricule,
concat(snp.li_nom, ", snp.li_prenom) asNem_Prenom,

ptc.li_typecontrat,

pmfc.li_motiffincontrat a5 Motif_Fin_Contrat,

pgc.li_gualifcontrat as Qualification_Conftrat,

pa.li_agence as Agence,

WEBSERVICE Name of the API object that will receive the data (basically, the tail of the URL)
AQu

¢ must start with the target Webservice Object (URL queue) in which the source data will be sent in.
webservice:SELECT (.)

sobjects/Account/:select * from Account.csv

ACTIVE DIRECTORY Name of the AD object on which we will write data. The Source field names must match an existing attribute from the AD.
You can alias the fields if they don’t have a valid attribute name.
(ex : SELECT myname as name, account as sSAMAccountName FROM...)

users:select addata.sAMAccountName, addata.name, addata.description [from ad_users.csv as addata

How field mapping works
By simplification, a SELECT statement is written as follows:

SELECT * FROM [SOURCE]
Or
SELECT field1, field2 [...] FROM [SOURCE]
Or
SELECT field1 as dest1, field2 as dest2 [...] FROM [SOURCE]
Or

SELECT CONCAT(field1, field2) as dest1, TRIM(field2) as dest2 [...] FROM [SOURCE]

The field alias serves as a reference to Fuzible to build and fill the Target connexion. If it is not present, the name of
the field is used, otherwise, it is the alias:

On a « SELECT * », the Target's column names will be the same as the Source.

On a « SELECT field1 », the column name in the target will be "field1."
On a « SELECT field1 as dest1 », « destl » will be used as a field name in the Target.
...and so on.

Hence the usefulness of preparing your Source query well.

Important note: If you want to put an alias on the fields you retrieve, you must use "AS"
Indeed, if a CSV file includes field names with whitespaces, Fuzible will be unable to separate the alias and the
fields. Field framing is not supported (quotes or hooks around the fields)

Example:
SELECT mon champ, mon deuxieme champ FROM monfichier.CSV OK
SELECT mon champ lerchamp, mon deuxieme champ 2emechamp FROM monfichier.CSV NON-OK
SELECT mon champ as lerchamp, mon deuxieme champ as 2emechamp FROM monfichier.CSV | OK

In case the Target is a SGBD, Fuzible compares the Source and Target fields, performs its "INSERT, DELETE, UPDATE"
operations based on what is available in the Target only. For example, if you’re querying a Source that has 50 fields
and the Target has only 25 of these fields, that's no problem. The reverse is also true.

Regarding inter-compatibility (the Source would be SQL Server, the Target would be MySQL), Fuzible transcodes the
data on the fly to make it compatible between both Source and Target, you don't have to worry about the data
types.

Please also note that Fuzible SQL understands field framing if column/table names do not only use
numbers/letters :

ex : SELECT "my,weird field/with Istrangechars" FROM myFile

Special cases of synchronization queries:

Sync. works by comparing Source and Target data. This way of working requires the same query to be performed in
both environments. The software knows how to transcode most queries but there are some limitations:

Example 1:

CIBLE :SELECT champl1 as dest1, champ2 as dest2 FROM SOURCE WHERE champ1 = ‘TEST’
=>» The query that will be executed on the Target will be :

SELECT dest1, dest2 FROM CIBLE WHERE dest1 = ‘TEST’

The « WHERE » filter has been transcoded.

Another case :

CIBLE :SELECT champ1 as dest1, champ2 as dest2 FROM SOURCE WHERE champ3 = ‘TEST’
=>» The query that will be executed on the Target will be :

SELECT dest1, dest2 FROM CIBLE WHERE champ3 = ‘TEST’

The problem is that "champ3" does not exist in the SELECT statement. Fuzible cannot know what "field3" refers to in
the Target table. If by chance this field exists (ISO-perimeter tables), it will not be a problem, but if this field does not
exists (because the source query is complex, the conditions refer to fields on join tables, sometimes very complex
conditions (nested SELECT ...)) the query will not succeed, and the sync. will surely fail.

An SQL trick to make up for this particularity: have the source SGBD execute a nested query:

Let us take this complex query in Dynamics AX. It contains several transformations and conditions. By framing it as a
sub-query, Fuzible will then only worry about the main query to make its transcoded query.

AX_f_ecritures:SELECT * FROM

(SELECT T1.RECID AS id_ecriture,

T1.ACCOUNTINGCURRENCYAMOUNT AS nb_montant,

T2.ACCOUNTINGDATE AS dt_ecriture,

CAST(LEFT(CONVERT(varchar, T2.ACCOUNTINGDATE,112),6) AS INTEGER) AS id_anneemois,

T6.DATAAREA AS id_societe_ax,

MA.MAINACCOUNTID AS id_comptecomptable,

T3.DISPLAYVALUE as li_analytique,

CASE WHEN SUBSTRING(T3.DISPLAYVALUE, 8, 3) ='--' OR CHARINDEX('-', T3.DISPLAYVALUE) = 0 THEN NULL ELSE
SUBSTRING(T3.DISPLAYVALUE, 8 + LEN(MA.MAINACCOUNTID) - 6, 3) END as id_bu_ax,

SUBSTRING(T3.DISPLAYVALUE, 12 + LEN(MA.MAINACCOUNTID) - 6, 3) as id_activite_ax,

SUBSTRING(T3.DISPLAYVALUE, 16 + LEN(MA.MAINACCOUNTID) - 6, 3) as id_agence_ax,

CASE WHEN LEN(LTRIM(SUBSTRING(T3.DISPLAYVALUE, 20 + LEN(MA.MAINACCOUNTID) - 6, 9))) IN (3,5) THEN " ELSE
REPLACE(SUBSTRING(T3.DISPLAYVALUE, 20 + LEN(MA.MAINACCOUNTID) - 6, 9), '-', ') END as id_chantier_ax,

CASE WHEN LEN(LTRIM(SUBSTRING(T3.DISPLAYVALUE, 20 + LEN(MA.MAINACCOUNTID) - 6, 9))) =3 THEN SUBSTRING(T3.DISPLAYVALUE, 20 +
LEN(MA.MAINACCOUNTID) - 6, 3) ELSE " END as id_metier_ax,

CASE WHEN LEN(LTRIM(SUBSTRING(T3.DISPLAYVALUE, 20 + LEN(MA.MAINACCOUNTID) - 6, 9))) =5 THEN SUBSTRING(T3.DISPLAYVALUE, 20 +
LEN(MA.MAINACCOUNTID) - 6, 5) ELSE SUBSTRING(T3.DISPLAYVALUE, CASE WHEN LEN(LTRIM(SUBSTRING(T3.DISPLAYVALUE, 30 +
LEN(MA.MAINACCOUNTID) - 6, 5))) =4 THEN 29 + LEN(MA.MAINACCOUNTID) - 6 ELSE 30 + LEN(MA.MAINACCOUNTID) - 6 END, 5) END as
id_destination_ax,

tl.text AS li_ecriture,

t2.SUBLEDGERVOUCHER AS li_numero_piece,

ljit. JOURNALNAME as id_code_journal,

T2.JOURNALNUMBER as id_journal,

T1.QUANTITY AS nb_quantite,

T2.CREATEDDATETIME as dt_saisie,

CONVERT(nvarchar(6), T2.CREATEDDATETIME, 112) as id_anneemois_saisie,

T2.CREATEDBY as li_utilisateur

FROM GENERALJIOURNALACCOUNTENTRY T1

LEFT JOIN GENERALJOURNALENTRY T2 ON (T1.GENERALJOURNALENTRY=T2.RECID AND (T1.PARTITION = T2.PARTITION))

LEFT JOIN LEDGERENTRYJOURNAL lej on t2.LedgerEntryJournal=lej.Recid

LEFT JOIN LEDGERJOURNALTABLE ljt on lej.JournalNumber=ljt.JournalNum and ljt. DATAAREAID=T2.SUBLEDGERVOUCHERDATAAREAID
LEFT JOIN DIMENSIONATTRIBUTEVALUECOMBINATION T3 ON (T1.LEDGERDIMENSION=T3.RECID AND (T1.PARTITION = T3.PARTITION))
LEFT JOIN LEDGER T4 ON (T2.LEDGER=T4.RECID AND (T2.PARTITION = T4.PARTITION))

LEFT JOIN FISCALCALENDARPERIOD T5 ON (T2.FISCALCALENDARPERIOD=T5.RECID AND (T2.PARTITION = T5.PARTITION))

LEFT JOIN DIRPARTYTABLE T6 ON (((((T6.PARTITION=T1.PARTITION) AND (T6.PARTITION=T1.PARTITION)) AND (T6.PARTITION=T1.PARTITION))
AND (T4.PRIMARYFORLEGALENTITY=T6.RECID AND (T4.PARTITION = T6.PARTITION))) AND (T6.INSTANCERELATIONTYPE IN (41))

Left join MAINACCOUNT MA on MA.RECID = T3.MAINACCOUNT

LEFT JOIN DIMENSIONHIERARCHY H ON T3.ACCOUNTSTRUCTURE = H.RECID AND H.PARTITION=T3.PARTITION

WHERE 1 = (CASE WHEN t2.SUBLEDGERVOUCHER LIKE 'CLOTURE%' AND MONTH(T2.ACCOUNTINGDATE) = 12 AND MA.MAINACCOUNTID <
600000 THEN 0 ELSE 1 END)

AND 1 = (CASE WHEN (T6.DATAAREA IN ('AIR', 'MPY') AND T2.ACCOUNTINGDATE >='01/01/2019') THEN O ELSE 1 END)

) as REQ

WHERE REQ.id_anneemois_saisie >= 202001

Will be transcoded for the target as: SELECT * FROM AX_f_ecritures WHERE id_anneemois_saisie >= 202001

Now let's see what can be done with an SQL query:

SELECT - From a database, to a database

A Query must start with the table name in which data will be written in (will be created if non-exstent).
2 MyTable:SELECT () Quick Help

AX_dim_agences:select distinct value asid_agence_ax, name asli_agence from DimAttributeQMCostCenter
A¥_dim_societes:select ID asid_societe_ax, NAME asli_societe from BICOMPANYVIEW
AX_dim_activites:select value asid_activite_ax, name as li_activite from DimAttributeOMBusinessUnit
AY_dim_metiers:select value asid_metier_ax, name asli_metier from DimaAttributeOMDepartment
AX_dim_plancomptable:SELECT DISTINCT{A.[MAINACCOUNTID]) asid_comptecomptable,
LEFT{A.[MAINACCOUNTID], 1) asid_racine_comptecomptable,

A.[NAME] as li_comptecomptable,

A.[TYPE] asid_type,

CASE A.[TYPE] WHEN 0 THEN 'Bilan' WHEN 3 THEN 'Résultat’ ELSE 'Inconnu' END asli_type

FROM [MAINACCOUNT] A

INMER JOIN (SELECT MIN(RECID) AS RECID, MAINACCOUNTID FROM MAINACCOUNT GROUP BY MAINACCOUNTID) B ON A.R
ORDER BY A.[MAINACCOUNTID]

Any "SELECT" statement that is compatible with the source SGBD. This can be a simple or a more complex one.

SELECT - From a database, to a file

start with the filename in which data will be written in Show me an exemple

MyTutorial.csv:SELECT user as userColumn, connstring_id as idColumn, connstring_name as nameColumn
from user_connstrings WHERE user LIKE 'GUIZ'

MyTutorial2.csv:SELECT COUNT(*) as nbConn

from user_parameters asup

inner join user_connstrings uc on up.user = uc.user

order by up.user ASC

Any "SELECT" query that is compatible with the source SGBD. This can be simple or complex.

SELECT - From a database, to an email address

A Query must start with the mail addressies) for which you want to send data to (addresses have to be separated by a "),

2 : mymail@gmail.corm.anymail@yahoo frSELECT) Quick Hely
1?1}:select * from v_adm_metrigues as Métrigues_Principales;

121 }:SELECT nspname || "." || relname A5 "Nom_table",pg_size_pretty(pg_relation_size(Top_10_des_tables_les_plus_lourdes.oid))
WHERE nspname MOT IN {'pg_catalog’, 'information_schema") and relkind = 'r'

ORDER BY pg_relation_size(Top_10_des_tables_les_plus_lourdes.oid) DESC ld

1?1 }:SELECT Top_10_des_tables_avec_le_plus_de_lignes.relname asMom_table, reffuples as Nombre_de lignes
FROM pg_class a5 Top_10_des_tables_avec_le_plus_de_lignes

JOIM pg_stat_user_tables AS tabstat OM Top_10_des_tables_avec_le_plus_de_lignes.relname = tabstat.relname
ORDER BY reltuples DESC 10

Any "SELECT" query that is compatible with the source SGBD. This can be simple or complex.

Note: The source query makes use of Dynamic Parameters, in this example, a dynamic @mail address is set in the "Job Configuration" tab, and used as the
Output

Apart from a query on a SGBD, Fuzible's SQL engine takes over:

SELECT - From a file

SAMPLE_OUTPUT_LEFTJOIN.XLSX:SELECT fileA.id_sample AS IdInitial, fileB.id_sample_join AS IdJoin,
fileB.li_sample_join as LiJoin, ISNULL(fileB.li_sample_join, 'Nothing") as IsMullField

FROM SAMPLE.CSV ASfileA

LEFT JOIN SAMPLE_JOIN.CSV AS&fileB ON fileA.id_sample = fileB.id_sample_join
SAMPLE_OUTPUT_INNERJOIN.XLSX:SELECT fileA.id_sample AS IdInitial, fileB.id_sample_join A$ Idloin,
fileB.li_sample_join as LiJoin FROM SAMPLE.CSV ASfileA

INNER JOIN SAMPLE_JOIN.CSY ASfileB ON fileA.id_sample = fileB.id_sample_join
SAMPLE_INNERJOIN_SUBQUERY.XLSX:SELECT fileA.id_sample AS IdInitial, fileB.id_sample_join AS$ IdJoin,
fileB.li_sample_join as LiJoin FROM SAMPLE.CSV ASfileA

INNER JOIN (SELECT * FROM SAMPLE_JOIN.CSV) ASfileB ON fileA.id_sample = fileB.id_sample_join

See here a somewhat complex example of queries made on multiple files, with joins, and even a sub-query. The SQL syntax is strictly the same as that of a
traditional SGBD.

SELECT - From a webservice using Fuzible SQL (A)

A Query must start with the table name in which data will be written in (will be creatsd if non-sxistent).
2 MyTable:SELECT () Quick Help

glpi_tickets:select

Entity.id asid_entite,

Entity.name as li_entite,

Ticket.id as id_ticket,

Ticket.name as|i_ticket,

Ticket.date as dt_ticket,

Ticket.closedate as dt_cloture,

Ticket.urgency asnb_urgency,

Ticket.impact as nb_impact,

Ticket.priority a5 nb_priority,

Ticket.status asid_status,

Cat.id asid_category,

Cat.completename as li_category,

CASE Ticket.status WHEN 1 THEN 'Nouveau' WHEN 3 THEN 'Planifié WHEN 4 THEN 'En Attente’ WHEN 6 THEN 'Cloturé' WHEN
Ticket.users_id_recipient a5 id_user,

User.name asli_user,

ISNULL(Item.id, 1) asid_item,

Item.itemtype asli_itemtype,

CASE Item.itemtype WHEN 'Software’ THEN Soft.id ELSE " END asid_software,
CASE Item.itemtype WHEN 'Software' THEMN Soft.name ELSE " END as li_software,
ISNULL(Grp.id, 0) asid_groupe,

Grp.name asli_groupe,

usrTicket.users_id asid_user_attribue,

Useraffecte.name as li_user_attribue,

Req.id asid_requesttype,

Reg.name as li_requestype,

CASE Ticket.type WHEN 1 THEN 'Incident’ ELSE 'Demande’ END asli_type

FROM Ticket/?order=desc&range={?1}&is_deleted=0 as Ticket

INNER JOIN RequestType/ AS$Req ON Req.id = Ticket.requesttypes_id

INNER JOIN Entity/ As Entity ON Entity.id = Ticket.entities_id

LEFT JOIN (SELECT tickets_id, MAX(groups_id) as groups_id FROM group_Ticket?order=desc&range=0-15000 GROUP BY ticket
LEFT JOIN (SELECT MAX(users_id) as users_id, tickets_id from Ticket_User/?range=0-20000&order=desc where type = 2 grouj
LEFT JOIN User/?range=0-5000 as UserAffecte ON usrTicket.users_id = Useraffecte.id
LEFT JOIN Group/ As Grp ON Grp.id = GrpTicket.groups_id

LEFT JOIN User/?range=0-3000 asUser ON User.id = Ticket.users_id_recipient

LEFT JOIN ITILCategory/ a5 Cat ON Cat.id = Ticket.itilcategories_id

LEFT JOIN Item_Ticket/?order=desc&range=0-20000 as Item ON

LEFT JOIN Software/?order=desc&range=0-20000 as Soft ON Soft.id = Item.items_id

This example is quite complex and shows how much a query can be made in such a way that it would be carried out in a SGBD.
On the other hand, unlike a SGBD, the header is not known in advance (fields retrieved from the API), it is advisable to do first some "SELECT *" to see what’s
returned by the API before using joins and other transformations.

The "Sandbox" tab allows you to do some testing.

Example of the GLPI software API:

Simple query:
SELECT * FROM Computer/?range=0-5000
=>» Brings back the list of all computers (5000 entries)

| can of course use some filtering:
SELECT * FROM Computer/?range=0-5000 where states_id = 1
=>» | know that the field "states_id" exists in what brings me the API so | can filter on this field

Similarly, if | know the list of fields, | can ask as follows:
SELECT serial as Serial, name as Machine, users_id as Glpi FROM Computer/?range=0-5000 WHERE states_id=1

SELECT - From a webservice using Fuzible SQL (B)

sample3:SELECT id_sample,
substring(li_random_string, 1, 5) asli_substr
FROM /ws/public/sample_data?order=desc[{ "id_ssgroup":"'001""}]

For example, this API returns 2 data tables. | can choose to get both of them (will create 2 tables in the Target), or get only one of the 2 :
The "TABLE x" function here determines the data table on which the query applies. The other table will be returned as a simple “SELECT *” statement,
because it is not possible to query several tables from a single query.

It is possible to get only one of the 4 tables thanks to the syntax "ONLY":

sample3:SELECT id_sample,
substring(li_random_string, 1, 5) asli_substr
FROM /ws/public/sample_data?order=desc[{ "id_ssgroup":"'001'"}]

Regarding the APl we are querying, we can integrate some body content into the query. The APl documentation of the webservice specify how to filter one
of the fields using a body using JSON.
=>» The hooks are used to integrate some body content (XML, JSON or Form-data)

On the other hand, unlike a SGBD, the header is not known in advance (fields retrieved from the API), it is advisable to do first some "SELECT *" to see what’s
returned by the API before using joins and other transformations.
The "Sandbox" tab allows you to do some testing.

SELECT - From Salesforce API using SoSQL

When you have set up the Source connection with a template that has a specific simili-SQL language (graphQL, NxQL, SoQL), you can use this language to
query the APl instead of using Fuzible SQL, which will make the transcoding work much easier for you.
In the following example, we’re querying the Salesforce CRM using SoQL :

Sandbox

A Query must with the filename in which data will be written in.
ex : MyFile.CSV:SELECT (..}

salesforce.csv:select name, BillingCity from Account WHERE isDeleted = false

While the same query, using Fuzible SQL mode, looks like this, which is much less convenient:

Sandbox

A Query must start with the filename in which data will be written in.
ex : MyFile.CSV:SELECT (...)

salesforce.csv:select * from /query/?q=SELECT+name,BillingCity+from+Account+WHERE+isDeleted + =+false

SELECT - From an e-mail box

myOutputTable:select 3 DATE, FROM, SUBJECT, UID from mymail@gmail.com
myOutputTable2:select 10 DATE as myDate, FROM as From, SUBJECT as mySubject, UID as IdMail
from myothermail@gmail.com[myPassword]

WHERE DATE >= '01/01/2020'

Example of a GMAIL address:

SELECT * FROM mymail@gmail.com[mypassword]
= Will bring back the emails list from the address "mymail@gmail.com" using the password entered in brackets.

SELECT * FROM mymail@gmail.com

=>» Wil bring back the emails list from the "mymail@gmail.com" address using the password entered in the connection string.

| can of course filter and name the columns if | know them (recall: the SANDBOX is made for this):
SELECT SUBJECT, SENDER, TEXTBODY, TO FROM mymail@myProvider.com WHERE DATE >='01/01/2019'

SELECT - From Active Directory

A Query must start with the filename in which data will be written in.
ax : MyFile CSV:SELECT (...) Quick Help)

test_ad_grp.csv:select * from groups

As with webservices and maiboxes, Fuzible engine does not know in advance all the fields that can be returned by the AD domain. It is advisable, to test to
make a simple SELECT * FROM USERS

"FROM" refers to the AD object being queried (USERS or GROUPS)

The example brings back the list of AD groups that exist.

QUERY ASSISTANT
Like SQL Tools, the software offers query entry facilities through a pop-up menu that displays based on the words you
are writing:

In the following example, | am querying an SGBD and just have entered "FROM": the menu then shows me a list of available
tables. A simple "TAB" allows me to access this floating menu, the arrows allow to choose a table, while "ENTER" inserts the
chosen item in the query.

Sandbox

Show me an exemple

myTable:select * from |

user_connstrings
user_connstrings params
job_queries
sqlite_sequence
app_stacklaunch
app_planifmodel
service_parameters
client_jobs
app_log_ent
app_log_lig
app_synchro_records
shs_replicator_synchro_records
user_parameters
sneakpeak

MyTutorial
sample_table 3
sample
sample_table 1
sample_table_2
sample_table 4
sample_table_5
prefix_sample_table 3
prefix_sample
prefix_sample_table_1

prefix_sample_table 2

Quick Help

Synchro : Bypass query filters in Target

mailto:mymail@gmail.com
mailto:mymail@gmail.com

In the following example, | already have a table and | complete my "SELECT" statement: the list of fields is presented, as well as
the classic SQL functions that can be used.

Sandbox
Show me an exemple

myTable:select stl.\ from sample_table_1 as st1

id_sample

li_sample

at random date
nb_random_number
li_random string
id_group

id_ssgroup

Quick Help
Synchro : Bypass query filters in Target

The Query Assistant works for all types of Sources, it is much more advanced for file queries and SGBD because for other cases,
there is no method to, for example, expose the list of objects of a webservice and even less the list of available fields. In this
case, it simply serves as an assistant to the creation of an SQL function (CONCAT, ISNULL...).

ADVANCED “SELECT” STATEMENT
The previous examples are relatively simple, they show how one can basically query a Source in the form of "SELECT"
when it is not a database.

Fuzible's SQL language understands more complex syntax, and writing an SQL query into the tab is augmented by a Query

Assistant that allows you to see and use all available query options on the fly.
If for example | type "SELECT C", a small pop-up menu will offer me several things:

- CONCAT

- CASE

- COALESCE

- CHARINDEX
- COUNT

| can then use one of these elements to manipulate the source data. Examples:

» SELECT CONCAT(champ1, champ?2) as dest1 [...]
» SELECT CASE champ1 when ‘OUI’ then 1 WHEN ‘NON’ then 2 ELSE O END as dest2 [...]
» SELECT COUNT(champ1) as dest1, champ2 FROM MONFICHIER GROUP BY champ2

To measure the full range of possibilities offered by the SQL engine, you have a default "Sample" Job that has several queries
using all of these advanced features. You can learn from it.

There’s also some kind of “Anonymization” feature :

» SELECT ANONYMIZE(myField) FROM myFile
Will mix “myField” values between them
» SELECT ANONYMIZE(myField, “RANDOM”) FROM myFile
Will randomize “myField” values
» SELECT ANONYMIZE(myField, “myRandomizationFile.csv”) FROM myFile
Will load the specified file and use the values to replace original “myField” values

Fuzible SQL Technical limitations:

1) Nested SELECT only work on "tables" and "where" filters (see example "webservices A"), you can't make a sub-select
for a field:

Valid:

A Query must start with tha filename in which dzta will be writezn in.
ex 1 MyFile,CSV:SELECT (...} Quick Help

test:select *
from monfichier asa
inner join (select MAX(id) asid, monclient a5 id_client from unfichier where typeclient = "local") asb ON a.id = b.id

Valid:

& Query must start with the tzble name in which dara will b= written in {will bz created if non-existant).
& MyTable:SELECT [...) Quick Help

test:select *

from {select * from monfichier) as a

Invalid:

& Query must start with the filenama in which data will be writtzn in.
e ¢ MyFile CSV=SELECT (...} Quick Help

test:select a.*,
(select MAX(id) asid, monclient a5 id_client from unfichier where typeclient = 'local) asb
from monfichier asa

2) You cannot nest the sub-selects. The query will not succeed.
ex: SELECT * FROM (SELECT * FROM (SELECT * FROM monfichier) as data) as data

Additional note:
Some sources may return multiple data tables (webservices, JSON or XML files).

By default, the software will create as many targets as returned tables. However, all SQL processing operations associated with
your query (SQL, Group By, Where, Order By...) will be applied to the first table only.

For some reason, if you want your query to apply to another table, it's possible to indicate it by doing so:
OUTPUT :SELECT TABLE x champl, ...
... indicating, thanks to "TABLE x," the table number to which the query applies.

If "x" is invalid (example: | put TABLE 10 when the source returns only one table, all operations associated with the query will be
cancelled.

Of course, you cannot guess in advance what the data source is made of. The "sandbox" tab is there for that. Make a simple
"SELECT * FROM masource" and an F5 to find out all the results returned by the query. If the result returns multiple tables, you
will see it, and then you'll be able to see the contents of each table.

You can also say "ONLY" if you only want to retrieve the requested table (otherwise, the others will also be processed).
Exemple : SELECT TABLE x ONLY champ 1,...

Look at the example job to understand what can be done and most importantly, experiment using SANDBOX. The program is
verbose enough to allow you to debug step by step a query that would be wrongly written.

SELECT Multi-tables, multi-files

BDD
You can get multiple tables at once, if for example you want to retrieve all the tables that contain the word
"param," you can enter the query as well:

OUTPUT : SELECT * FROM %param%

Fuzible detects the use of the "%" and will search for all the tables that match this pattern. It then turns a single
query into several. It goes without saying that unless the names of the fields of these tables are all the same, the
"SELECT *" is recommended...

There are three scenarios for driving the output:

- Ifyou put « * » (ex: *:select * from %param%), « * » will be replaced by the name of the table.

- If you put a forced name (ex : param:select * from %param%), the data will all go in the same output, here:
"param". All data coming from any query with that pattern will be merged.

- Ifyou put "import_*" (ex : param_* :select * from %param%), the "*" will be replaced by the name of the
table, but the final table will have a name that will begin with « import_ »

FICHIERS

In the same way as with a database, you can query multiple files at once, for example, if you want to retrieve
all the files that contain the word "param," you can enter the query like this (like a "DIR" in the MSDOS command
prompt)

OUTPUT :SELECT * from *.CSV

Fuzible detects the use of the "*" and will query all CSV files from the connection string (path).
The use of the '*' can be extended as follows:

OUTPUT :SELECT * from Fl*test*.*

=>» This means that files starting with "FI" and then having something else afterwards, then "test", then
something else, will be loaded.

As with databases, you can name fields and work the query in an advanced way (with transformation functions... etc.
..) but in this case, the files must be of the same structure and, if they have a header, it must be the same.

Driving the Output works in the same way as previously explained.

Multi-Target Queries
By default, a Job works with a single Target.

However, this can be changed to work with 2 Targets in parallel (in case for example we want to feed 2 databases
identically, simultaneously)

Let us take a simple example: build a Job query, then click right on it. A pop-up menu appears and offers you several

options including "Create Dual Target"

Sandbox
Show me an exemple

mysynchrotable:select thi.id_sample asidSample, tb1.li_sample as liSample,
th1.dt_random_date as RandomDate, th2.SecondColumn as AnotherColumn

inner join sample2 astb2 ON tb1.id_sample = tb2.Firs| Query Analyzer

where 100 > tbl.id_sample > Source Infos 4
and tb1.id_sample > 10 > Target Infos 4
and (tbl.id_sample > 11 and tbi.id_sample < 99) > Query Detalls R

and tb1.li_sample not like 'weirdstring'

order by th1.id_sample desc Synchro Query

> Transcoded for Target >
> Validity check for Synchre Query

Execute Query

> Run this individual query

Scripting
> Get full header from query and copy/paste it 3
> Dynamic Parameters 3

> Basic Query Builder

Advanced Query Scripting
. > Add Cross-Connections Join

> Create Dual Target |

A prompt will then ask you to choose your 2 Targets, and the associated output. Confirm.

£28 Multi-Target X
First connection in Query Second connection in Query
[12] -> POSTGRE : Postgres Rasp v [11] -> MYSQL : MySQL Raspber v
mytargettable myothertargettable

Accept

The query will be augmented by a small script:

Sandbox

Show me an exemple

[12]mytargettable[11]myothertargettable:select th1.id_sample asidSample, th1.li_sample asliSample,
th1.dt_random_date as RandomDate, th2.SecondColumn as AnotherColumn

from samplel astbi 5
inner join sample2 s b2 ON tb1d_ssr IMPOSOIES RASpOC IS ONEPoe i (B S yisraetabI

where 100 > tb1.id_sample Query Analyzer

and tbl.id_sample > 10 > Source Infos »
and (tbl.id_sample > 11 and tb1.id_sam > Target Infos »
and th1.li_sample not like 'weirdstring' > Target B Infos »
order by tb1.id_sample desc > Query Details »

Between brackets, the Connection ID, followed by the name of the target table. A new right-click to view the pop-up
menu, to which a "Target B Info" item has been added, that provides information about the chosen Target.

But we can also imagine filling a database table, and a file, in parallel. Anything is possible. Target connections can

even be dynamic using the Dynamic Parameters:

The query:

Sandbox

{71 Jmysynchrotable {22 }mysynchrofile.csv:select th1.id_sample asidSample, th1.li_sample asliSample,
tb1.dt_random_date as RandomDate, th2.SecondColumn as AnotherColumn

from samplel astb1

inner join sample2 asth2 ON tb1.id_sample = th2.FirstColumn

where 100 > thl.id_sample

and tbl.id_sample > 10

and (tbl.id_sample > 11 and tb1.id_sample < 99)

and tb1l.li_sample not like ‘weirdstring'

order by tb1.id_sample desc

Dynamic parameters:

Job Type Data Synchronization ~ Allow Delete, Update, Insert v Historize UPDATED and DELETED rows

[12}[1] ?

Dynamic Parameters

View Job With Replaced Values

~

This is of interest when you want to switch data from one environment to another (pre-production,production,
developmen, etc.) on the fly.

Moreover, one can choose to fill the 2 Targets in parallel or one after another, it all depends on the performance of
the computer that hosts Fuzible (see General Configuration / SHS Analyzer)

Technical limitation:

Multi-Target is limited to 2 targets.

Cross-Queries

This feature is one of Fuzible's most powerful. It allows you to query different data sources within a single
query: you can get data from a database from a file and complete it with data from a webservice. Anything is
possible and can be achieved in a fairly simple way.

To make this concept clearer, imagine that instead of joining between several SQL tables to complete a dataset, you
make joins between several different connections.

Let us take the following example. My main connection is a MySQL database.

Build a simple query, then click right on it. The pop-up menu appears and offers several options including "Add
Cross-Connections Join."

Sandbox

Show me an exemple
mytargettable:select * from samplel

| MariaDB Synology > mytargettable
Query Analyzer
> Source Infos 4
> Target Infos 3
> Query Details 4

Execute Query

> Run this individual query

Scripting
> Get full header from query and copy/paste it 4
> Add a dynamic parameter

> Basic Query Builder

Advanced Query Scripting

> Add Cross-Connections Join

> Create Dual Target

Quick Help

A prompt then asks you to choose a new data Source, and the type of join that will be made between the two
Sources. | pass on the very advanced "Optional Query Filter" feature, which filters the results.

58 Cross Queries X
First connection in Query Join Type Second connection in Query
[11] -> MYSQL : MySQL Raspber v INNEF [5] -> SQLITE : Local SQLite File v

INNER
LEFT

Optional Query Filter (WHERE somethin RIGHT

OUTER

A script area [--[5]] will appear in the query. You can then write a new query. This one will be associated with the

second connection. A right-click and you will find that the menu contains a new sub-menu associated with this
cross-query.

Sandbox

mytargettable:select * from samplel [--[5]] select * from sample_table_3

Query Analyzer
= Source Infos
> Target Infos

> Query Details

+ Cross-Query (Local 5QLite File)

Execute Query

Show me an exemple

> Cross-Query Behavior »

> Search Join-Link and Check the Cross-Query

= Run this individual query e ’
Tables 3
Scripting "
= Get full header from query and copy/paste it 3 Conditons
> Add a dynamic parameter Srowe &
Order By
= Basic Query Builder
Advanced Query Scripting
> Add Cross-Connections Join
> Create Dual Target
0
Quick Help
In the script area, the type of join expresses itself as follows:
-- INNER JOIN
>- RIGHT JOIN
<- LEFT JOIN
<> OUTER JOIN

The connection is shown between brackets.

Fuzible has only one way to define how to join the two sources between them: he uses the fields with the same
name to make his join. In the previous example, a "SELECT *" is performed on both sources, but | know that the
"id_sample" field is exists on both sources, Fuzible will join using this field.

On the other hand, if the fields names are different from one connection to another, the fields should be specifically
named. For example:

mytargettable:select * from samplel
[--[5]] select FirstColumn asid_sample, SecondColumn from sample_table_2

> Query : MySQL Raspberry - 100 rowi(s) and 7 column(s).
> Query : Local SQLite File - 10 row(s) and 2 column(s).

Cross-Query [Local SQLite File] will be joined with Main query [MySQL
Raspberry] using 'id_sample’ field.

Thanks to the alias, | force the link between the two sources with "id_sample".

Behavior of an cross-query

The contextual menu makes it easier for you to understand Fuzible's behavior related to the cross-query. In
the example below, SELECT * being used in both connections, the engine will only be able to determine the link
when the queries are executed: You need to be sure that the "id_sample" field exists in both datasets.

Warning: Any other field with the same name would also be considered as part of the key!

mytargettable:select * from samplel [--[5]] select * fram samnle tahle 2

Query Analyzer
= Source Infos 4
> Target Infos »
> Query Details 3

SOURCE CONNECTION : Local SQLite File
LINK DETAILS :
> JOIN TYPE : INNER

> Cross-Query Behavior k|

> Search Join-Link and Check the Cross-Query

o |

> AUTO JOIN FIELD(S) : *
= Run this individual query F=tE 4
B Tables L
Scripting
Conditions
> Get full header from query and copy/paste it 3
Group By
> Add a dynamic parameter
Order By

> Basic Query Builder

Advanced Query Scripting
> Add Cross-Connections Join

> Create Dual Target

Another way is to make a SELECT statement that specifies fields names. The contextual menu then tells you
which join field or fields are associated with it. There is no need to wait for the execution to know the behavior that
will be performed.

mytargettable:select id_sample, id_group from samplel
[--[5]1] select id_sample, li_substr froam sample_table_3

Query Analyzer
> Source Infos 3
> Target Infos r
> Query Details 3
- SOURCE CONNECTION : Local SQLite File
+ ’ .l)]
Cross-Query (Local SQLite File) » > Cross-Query Behavior » LINK DETAILS -
— > JOIN TYPE : INNER
Execute Query > Search Join-Link and Check the Cross-Query = AUTO JOIN FIELD(S) : id_sample
> Run this individual query e D
- Tables 3
Scripting
Conditions
> Get full header from query and copy/paste it 3
Group By
> Add a dynamic parameter
Order By

> Basic Query Builder

Advanced Query Scripting

> Add Cross-Connections Join

> Create Dual Target

Finally, the third way is to change the cross-query script: you can manually define the join field(s) by
separating them by a comma. The contextual menu specifies that the type of join is now manual.

mytargettable:select * from samplel
[-id_sample-[5]] select * from sample_table_3

Query Analyzer
> Source Infos 3
> Target Infos 3
> Query Details 3
+ Cross-Query (Local 5QLite File) 3 > Cross-Query Behavior 3 fg:"fg;i?[“;‘?mm ¢ Local 5QLite File

> JOIN TYPE : INNER
> MANUAL JOIN FIELD(S) : id_sample

Execute Query > Search Join-Link and Check the Cross-Query

> Run this individual query Fields »
e Tables »
Scripting
Conditions
> Get full header from query and copy/paste it 3
Group By
> Add a dynamic parameter
Qrder By

> Basic Query Builder

Advanced Query Scripting

> Add Cross-Connections Join

> Create Dual Target

Results
By going to "Cross-Query/Search Join-Link and Check the Cross-Query", Fuzible will perform a test to check

the viability of the cross-query. The result will be presented as follows:

mytargettable:select * from samplel
[--[5]1] select * from sample_table_3

> Query : MySQL Raspberry - 100 row(s) and 7 column(s).
> Query : Local 5QLite File - 20 row(s) and 2 column(s).

Cross-Query [Local SQLite File] will be joined with Main query [MySQL
Raspberry] using 'id_sample’ field.

On the other hand, if there is no link, here is what will be displayed; in this example, | forced the names of
the columns of the second Data Source, putting an "idSample" name that does not exist in the first Data Source
(id_sample).

mytargettable:select * from samplel
[-=[5]] select FirstColumn asidSample, SecondColumn from sample_table_2

X

> Query : MySQL Raspberry - 100 row(s) and 7 column(s).
> Query : Local 5QLite File - 10 row(s) and 2 column(s).

No key found for this cross-query !

- Cross-Query Columns : idSample SecondColumn

- Main Query columns :
id_sample,li_sample,dt_random_date,nb_random_number.li_random_string.id_gro
up.id_ssgroup

Your query won't load. You can use field aliases on your query :

Exemple

SELECT id_client as mylink. li_client as dient_name FROM mytable

[--[2]11 SELECT client_id as mylink, creation_date as dient_creation FROM
myfile.csv

-= The column called "'mylink’ will become the primary key to link both sources

Search and Show Column Mappings

Because one of the aspects of Fuzible is to avoid the well-known ETL mapping tasks, there’s an option that
allows you to see the mapping that will be performed between Source and Target columns, and if there are some
orphan columns, a Query suggestion will also be showned if you need those columns to be mapped as well.

Fuzible will automatically find the closest name correspondances from the orphan Source and Target columns.
You'll be able to copy-paste the suggested Query instead of your existing one.

Sandbox

A Query must start with the table name in which data will ke written in (will be created if non-existent).
ex : MyTable:SELECT (..)

mysynchrotable:select * from bulkinsert

Query Analyzer

> Source Infos 3
> Target Infos]
= Query Details]

Synchro Query
> Transcoded for Target]
= Validity check for Synchro Query

Execute Query

> Run this individual query

Scripting
= Get full header from query and copy/paste it 3
= Dynamic Parameters 3

= Basic Query Builder

Advanced Query Soripting
= Add Cross-Connections Join

% Create Dual Target

B:? Mapping Information

Keep in mind that unmapped columns will be avoided until you set column aliases that matches the Target column names on ~
vour Query.
Check the bottom of that page to get a Query suggestion.

Mysynchrotable :
Columns will be mapped as follows : 40 record(s)

Semrce cobmmn | Lisk | Tarzet colemn

M benck 01 | OK | & benct 01

Sbeach 01 | OK | 5 beach 01

b banch 01 | OK | sy bench 01

dibeock 01 | OK | & bescy 01

i bench 07 | OK | i beoch 02

fbeoch 07 | OK | & bench 02

b beoch 01 | OE | 2b_bench 02

dibonck 07 | OK | dibeock 02

@ beack 03 | OK | i beach 03

Ebeach (3 | OK | 5 bench 03

i bench 05 [OK | sb_bench 03

dibench 05 | OK | é beoch 05

i bench 04 | OK | i beoch 04

5bonch 04 | OK | 5 bench 04 (v

Close

Showing Source Data

The contextual menu contains a "Load Source Data" option that allows you to view the results, whether it is

all the data from the cross-query, or just the data from each individual query.

In the table below, | made a cross-query using a "LEFT JOIN", and loaded the data from the cross-join between the

two Sources. Only "id_sample" (from 90 to 100) records are present in the second connection, which explains why

"SecondColumn" is empty in other cases.

;5;? Show Source Data

Preview (rows)

500

Data Successfully Loaded.

- O pad

With data analyzer

DataTable Mame : test
Namespace : sample1
Row Count : 100
Fields Count : &

id_sample | li_sample dt random _date | nb_random_number | li_random string | id_group | id_ssgroup | SecondColumn
70 seven-zero | 10/8/2020 1:1049 PM | 9.0625 piynoetghykidghe | 000 000

71 seven-one 10/19/2020 1:10:49 PM | 31.0625 hsxnmgwrgwhvjnye | 001 001

72 seven-two 10/27/2020 1:10:49 PM | 59,6250 kudzjrucwhciotix 002 002

73 seven-three | 12/19/2020 1:10:49 PM | 33.6250 dbvsqxrozmpsxzqui | 003 003

74 seven-four 1/22/2021 1:10:49 PM | 41,6250 iijftkkooihndam 004 004

75 seven-five 11/13/2020 1:10:49 PM | 29.1250 dsdfmlsimyiwnfzc 005 000

76 SEven-six 8/21/2020 1:10:49 PM | 164375 dxhkhbjegljdxnhj 006 001

7 seven-seven | 9/24/2020 1:10:49 PM | 9.0625 monnlymgsubozwy | 007 002

78 seven-eight 11/19/2020 1:10:49 PM | 7.1250 cskbwhvhyiavoeay | 008 003

79 seven-nine 9/12/2020 1:10:49 PM | 33,1250 ifkwmvvgjpwkheeh | 009 004

80 cight-zero | 10/25/2020 1:10:40 PM | 344375 qkgecfmplkdgbpik | 000 000

a1 eight-one 9/17/2020 1:10:49 PM | 12,4375 pffoghgkobyrgwn | 001 001

82 eight-two 12/2/2020 1:10:49 PM_ | 16.8750 gudejikintohaxpb 002 002

83 eight-three 8/18/2020 1:10:40 PM | 8.6875 hceagwvynmswinhe | 003 003

84 eight-four 9/5/2020 1:10:49 PM | 45.5000 zlwieuserdogjppv 004 004

85 eight-five 8/3/2020 1:10:49 PM 183750 afegjlixsgzazvix 005 000

86 eight-six 8/26/2020 1:10:49 PM_| 20.3125 fikileskjddhyhc 006 001

87 eight-seven 11¢25/2020 1:10:49 PM | 58.3125 nsbkygcbfrdslmni 007 002

88 eight-eight 9/28/2020 1:10:49 PM | 22.0623 hguscraatpibsxqv 008 003

5 sight-nine | 12/23/2020 1:10:49 PM | 25.5000 suaghggnonrpyha | 009 004

20 nine-zero 8/19/2020 1:10:49 PM_| 38,0000 svgkjnntdygeaee | 000 000

a1 nine-cne 12/26/2020 1:10:49 PM | 54.8125 ggirlogjcbzkusch 001 001 nine-one
92 nine-two 12/14/2020 1:10:49 PM | 35.6250 rukcduncoichokuk | 002 002 nine-two
93 nine-three 10/27/2020 1:10:49 PM | 13.8125 gijbhaulnijfdbvp 003 003 nine-three
94 nine-four 1/1/2021 1:10:49 PM | 26,8125 mencejauuumppjzz | 004 004 nine-four
95 nine-five 1/26/2021 1:10:49 PM_ | 31.7500 dgmkhshesifnmzy | 005 000 nine-five
96 nine-six 10/14/2020 1:10:49 PM | 38.1250 qgseabnfzyxtagdfj 006 001 nine-six
a7 nine-seven 9/27/2020 1:10:49 PM | 55,9375 whbwugagrpginsdkk | 007 002 nine-seven
98 nine-eight 11/8/2020 1:10:49 PM_ | 13.3125 hdozehujkscbidoa 008 003 nine-gight
99 nine-nine 8/6/2020 1:10:49 PM | 55.8750 rlekjyyrifgpvuc 009 004 nine-ning
100 one-zero-zero | 12/12/2020 1:10:49 PM | 23.3125 wyfyrpn 000 000 One-ZEro-zero

Conversely, an "INNER JOIN" would have given this:

5;;? Show Source Data

Preview (rows)

500

Data Successfully Loaded.

Export content as CSV

- [m] X

With data analyzer

DataTable Name : test
Namespace : samplel
Row Count : 10
Fields Count : &

id_sample | li_sample dt random date | nb_random_number | li_random string | id_group | id_ssgroup | SecondColumn
a1 ning-one 12/26/2020 1:10:49 PM | 54.8125 ggjirlogichzkusch 001 001 nine-one

92 nine-two 12/14/2020 1:10:48 PM | 35.6250 rukcduncoiohakuk | 002 002 nine-two

93 nine-three 10/27/2020 1:10:49 PM | 13.8125 gijbhaulnijfdbvp 003 003 nine-three
94 nine-four 1/1/2021 1:10:49 PM | 26.8125 mencejauuumppjzz | 004 004 nine-four

95 nine-five 1/26/2021 1:10:49 PM_| 31.7500 dgmkhshesifimzx | 005 000 nine-five

96 nine-six 10/14/2020 1:10:49 PM | 38.1250 gseabnfzyxtagdfj 006 001 nine-six

a7 nine-seven 9/27/2020 1:10:49 PM | 55,9375 whbwugaqgrpginsdkk | 007 002 nine-seven
98 nine-eight 11/8/2020 1:10:49 PM_|13.3125 hdozehujkscbidoa | 008 003 nine-eight

99 nine-nine 8/6/2020 1:10:49 PM | 55.8730 niekjyyrifgpvuc 009 004 nine-nine

100 one-zero-zero | 12/12/2020 1:10:49 PM | 23.3125 whyrpn | 000 000 One-ZEro-zero

The data from the cross-query:

£28 Show Source Data - [m| X

Preview (rows) 500 Data Successfully Loaded. With data analyzer

DataTable Name : sample_table_2
Mamespace : sample_table_2
Row Count: 10

Fields Count: 2

id_sample | SecondColumn

100 one-zero-zero

99 nine-nine

98 nine-eight
97 nine-seven
96 nine-six
95 nine-five
94 nine-four
93 nine-three
92 nine-fwo

Ell nine-one

Cross-queries, data comparison feature
This mode allows you for example to compare data from two databases (to make a report of differences between

the two, for example)

By default, the "cross-query" feature is simple to use. But like any automatic feature, it is rigid. However, it can be
made more flexible by filtering the results.

This example compares tables in a production database with a pre-production database (Postgres)

A Query must start with the mail addressies) for which you want to send data to (addresses have to be separated by a '),

mail@mail.com:select table_name, table_type,

'Oui’ a5 pfésente_en_prod

from information_schema.tables As Tables_absentes_en_prod_ou_en_préprod
where table_name not like 'pg%' and table_type <= "VIEW'

order by table_type, table_name

[«>[75]WHERE présente_en_prod IS NULL OR présente_en_préprod IS NULL]
select table_name, table_type,

'Oui' a5 présente_en_préprod

from information_schema.tables

where table_name not like 'pg%' and table_type <= "VIEW'

order by table_type, table_name

You can see that the framed script area [<>[75]...] uses a conditional statement that allows comparison between the

two result sets.

=>» This way of scripting allows, once the data is collected, to filter the results according to the filter shown in
the script area.

If the target is an email address, the result will be as follows:

Tables absentes en prod ou en préprod : 21 record(s)

Table name Table type | Présente en prod | Présente en préprod
param_webservices BASE TABLE Oui
cometepreprod_cii_agents FOREIGM TAELE Oui
cometepreprod_cii_mois_agent FOREIGM TAELE Qui
cometepreprod_planning_cloture FOREIGN TABLE Oui
cometepreprod_ressourcas FOREIGM TAELE Qui
dbg_absence_comete BASE TABLE Oui
dbg_absence_rhpi BASE TABLE Qui
dbg_calendar BASE TABLE Oui
dbg_contrat_comete BASE TABLE Oui
dbg_contrats_rhpi BASE TABLE Qui
dbg_generateur_documents BASE TABLE Qui

Contextual Query Menu

The principle of using SQL to Synchronize or Replicate data can represent a fairly significant level of
abstraction. That is why Fuzible has a useful contextual menu, accessible when the mouse is on a query. A right click
and you can do the following:

- Get advanced information about the query
- Test the validity of the Sync. query (Synchronization Mode)
- Execute any of the job's queries without necessarily executing them all

- To have a script assistant for advanced functions

QUERY ANALYZER - News Source

Source Connection Summary

FILE

For a local file, the path and type of connection

MyTutorial:SELECT id_sample, SUBSTRING(li_sample, 0, 5) asli_sample, id_group asRenommedColumn, dt_random_date,
li_sample asli_test,

bon lowlSQlierle > WyTutorial
FROM
WHER Query Analyzer
" N DRIVER : CSV File
urce Infos ‘CONN. NAME : Local Path
INPUT PATH : C: ible\bir ‘ebug\FILES\
> Target Infos 4 SOURCE FILE(S) : SAMPLE.CSV

For a (S)FTP, the configuration of the (S)FTP and the path on the server

test:select * from /var/www/sftp/SAMPLE.CSV

Query Analyzer
DRIVER : CSV File

> Source Infos 4 CONN. NAME - SFTP Fuzible

SETPURL: -
> Target Infos , S
. 15 SFTP : True
> Query Details 4 USERNAME, PASSWORD : s it
122

Execute Query AUTHENTIFICATION BY KEY FILE : False

'SOURCE FILE(S) - [var/wwwewfsftp/SAMPLE.CSV

BDD

For an SQL connection, the driver, and the name of the database

MyTutorial.csv:SELECT user asuserColumn, connstring_id as idColumn, connstring_name as nameColumn
from user_connstrings WHERE user LIKE '{ 24}

Query Analyzer

DRIVER : Salite Database
> Source Infos 4 ‘ CONN. NAME : Local SQLite File
> Target Infos N DATABASE ¢

WS

Shows the whole behavior Fuzible uses to call the API. Check the URL, the authorization method.

sample1l:SELECT * FROM /ws/public/sample_data

Query Analyzer

DRIVER : Webservice REST
CONN. NAME : Fuzible Webservice de démonstration
BASE URL : hitps://wvw.fuzible-app.com
> Target Infos 4 FULL URL : httos:/fsww.fuzible-app.com/ws/public/sample._data
AUTHORIZATION METHOD : API_AUTH_HEADER
> TOKEN WILL BE ADDED TOQ QUERY HEADER : Authorizationzsis . S & - - -
METHOD : POST

> Source Infos 3

> Query Details 3

MAIL

Summary of settings used to connect to a mailbox
mytable:select 3 DATE, FROM, SUBJECT, UID from gu _

Query Analyzer
DRIVER : Mailbax:
CONN. NAME : Gmail Connection > Source Infos 4 ‘
SHTP HOST : smip.gmail.com
POP/IMAP HOST : imap.gmal.com > Target Infos 4
SHTP PORT : 567 \
POP/IMAP PORT : 95 > Query Details
I
Execute Query
Load Source Data (FS)

PROTOCOL : IMAP
AUTHENTIFICATION PROTOCOL : TLS12 > Run this individual query
UNKNOWN FIELD(S) : SUBJECT,UID
INFQ : Use 'SELECT *" if you don't know Mail fields names. It will retrieve all avalable fields. Otherwise, you can for exemple write a query like this : 'SELECT BODY, FROM, DA P

AD

The search query, the perimeter
ad_users:SELECT * FROM users

Query Analyzer
DRIVER : Active Directory
> Source Infos 4 CONN. NAME : Fuzible Active Directory Demo
AD OBJECT : (&(objectClass=user){objectCategory=person))
> Target Infos e SEARCH SCOPE : AD_BASE
> Query Details v INFO : Use 'SELECT * if you don't know AD fields names. It will retrieve all available fields. Otherwise, you can for exemple write a query like this : 'SELECT name, samaccountname FROM users’

QUERY ANALYZER - Target Info

BDD

- The name of the target database
- The destination table

- Any pre/post-Job command(s) that have been set

mytable:select * from sample

Query Analyzer
> Source Infos 4
DRIVER : MySQL/MariaDB Database
> Target Infos 4 CONN. NAME : MySQL Raspberry
DATABASE : test
> Query Details 4 TABLE NAME : mytable

FILE

- All the information about the target: the path, and, in case of an "OUTPUT"with a pattern (creation of

several files), the behavior that will be

- Any pre/post-Job command(s) that have been set

myfile.csv:select id_sample, li_sample from sample
Query Analyzer

> Source Infos

adopted.

DRIVER : CSV File
COMN. NAHE : Local Path

> Target Infos

OUTPUT PATH : ebug|FILES|
> Query Details ' ouTPUT F[LENAME myfile.csv
CSV HEADER : id_sample;li_sample
myfile.xml:select id_sample, li_sample from sample
Query Analyzer
> Source Infos »
DRIVER : XML File
> Target Infos 4 CONN. NAME : Local Path
OUTPUT PATH : Ci\L ebug\FILES\
> Query Details 4 OUTPUT FILENAME : myfilexml
XML STRUCTURE : <?xml version="1.0 K fid_sample><li_s s
myexcelfile.xIsx:select * from sample as MySpreadSheet
Query Analyzer
> Source Infos »
DRIVER : Excel File
> Target Infos 4 CONN. NAME : Local Path
OUTPUT PATH ebug|\FILES|
> Query Details ' ouTPUT FILENAME myexcelfile xisx
EXCEL SHEET NAME : MySpreadShest
Execute Query TITLE ROW : My Excel File
STYLE : Light1
CSV HEADER : Will be determined at runtime. ('SELECT =" was used in Source Query. Fuzible cannot retrieve column names now)

WS

URL : hzpss [- -_— s vrelsSeriiceApplcation=STANDARD

st e (725 AT Webservice RPY (Personnel Contrats/RIC) -> webservice=dossier ric modifier |

Query Analyzer

BAsE
FULL URL : hrtpsi// s e - ——

PARAMS WILL BE ADDED TO QUERY PARANS 1 b
HTTP QUER‘\’ wul e cetarmined gl SELECT * v ueein Saurcs Quary. Replcator canno rerisve coknn names now)
1 log_nehula L wehservn ric_vers_thgi
T Rmpernes i
- Y5 QUERITARGETIAME | modie rc
- WS GUERY ; Vil be detarmined ot rutimel SELECT =
W

as used in
S ASHERDATA Wil " wil Gt
W5_ROWID : 5o

e row posisen

= i e
M Iseron ==

 CRTONAL AR tustion;id_matricule;id_conts
Mot : Websarvice wil aumalxa\ly e 20 TP i ot

Shows the entire URL Fuzible has built

Checks the URL and behavior of the call.

Source Query. Rephcator cannot retrieve colurm
i message

» Source Tnfos ,
= Target Infos. v
> Query Detais R

n Execute Query
> Run this individual query

Scripting
5 Get full header from query and copy/paste it »
= Dynamic Parameters »

> Basic Query Builder

Advanced Query Scripting
> Add Cress-Connections Join
> Creata Dual Target

to send data to an API.

MAIL

from samplel as MyChart WHERE id_sample > {71}

id_sample,li_sample,dt_random_date,nb_random_number,li_random_string,id_group,id_ssgroup

Show me an exemple

Query Analyzer
> Source Infos »
> Target Infos »
> Query Details »

Indicates:

- The subject of the mail (retrieved from the job description)

- Recipients (OUTPUT of the query)

- The name of the data table (retrieved from the alias of the query:
SELECT * from matable AS My_Chart -> Affichera My Chart

(Underscores are systematically

DRIVER : Mailbox

CONN. NAME : Fuzible Email

MAIL SUEJECT : My Email
RECIPIENT(S) : fuzible@fuzible-app.com
CHART TITLE : MyChart

replaced by a whitespace)

AD users:select user as name, param1 as description from user_parameters

Query Analyzer
> Source Infos >
DRIVER : Active Directory
> Target Infos 4 CONN. NAME : Fuzible Active Directory Demo
AD QUERY : (&(objectClass=user] TA FROM : name]))
> Query Detalls g AD OBJECT TARGET : users

- The AD object in which data will be written in
- The search query that will be performed

QUERY ANALYZER - View Data
This option opens a new window that will allow you several things:

- Load source data to preview it
- Have information on each source field
- Test the sync. mode

By clicking on "Load Source Data," the software will load the source data and display a 500-row preview (can be
changed).

If the Job is a Sync. Job, each tab (Target, Insert, Update, Delete) will show you everything the sync. will do.

&5 Show Source Data X

Data Preview I Data Successfully Loaded. With Data Analyzer

Preview (rows) : 500

Source Data Target Data To Insert ToUpdate To Delete

- AXPROD Additional Properties -

[A%_dim_plancomptable] SYNCHRO_PRIMARY_KEY : id_comptecomptable
id_comprecomptabie | id_racine_comptecomptable li_comptecomptable id_type | ILype | SYNCHRO.TAG | DBNAME DTLOAD
101000 1 CAPITAL APPELE 3 Fdsuleat | |
10100000 1 Capital souscrit (Sociéiss d 5 - 3 Fdsulat | |
101100 1 SOUSCRIT NON APPE 3 Résukat | |
104100 1 PRIME D EMISSION 3 Résuluat | |
104200 1 PRIME DE FUSION 3 Résukat | |
104300 1 D APPORT 3 Résuluat | |
106100 1 LEGALE 3 Résukeat | |
106110 1 RESERVE LEGALE 3 Résuluat ||
106200 1 Réserves indisponibles. 3 Résukeat | |
106300 1 RES! 5 CONTRACTUELLES 3 Résuluat ||
1 1 Réserves réglementées 3 Résuleat [1
106480 1 RESERVE SPEC ART 238E CGI 3 Résuleat (1
106800 1 AUTRES RESERVES 3 Résuleat [1
109000 1 LE CAPITAL SOUSCRIT MON AP 3 Résuleat (1
10000 1 REFORT A NOUVEAL BENEFICE 3 Ssuar | |
113000 1 A NOUVEAU PERT: 3 Rdsuleat | |
120000 1 TAT EXERCICE BEMEFICE 3 Fdsuleat | |
121000 1 RESULTAT PROVISOIRE 3 Rdsultat || /22/2020 11:44:59
129000 1 TAT EXERCICE PERTE 3 Rdsultat || 22/2020 11:4458
120100 1 SUR DIVIDENDES EN ATTENTE D'AFFECTATION | 3 Résuluat | | 22/2020 11:44:59 A
13100000 1 Réserve ligala 3 Résukat | | 22/2020 11:4459
13310000 1 Autras réserves disponibles 3 Résuluat | | 22/2020 11:44
13321000 1 Réserve pour I'impdt sur la fortune 3 Résukat | | 22/2020 11:44
14110000 1 3 Résuleat || /22/2020 11:44:
14120000 1 3 Résuleat |1 2272020 11:44:
145000 1 3 Résuleat | | /22/2020 11:44:
151100 1 POUR LITIGE: 3 Résuleat | | /22/2020 11:44:
151110 1 MINATION COSTS 3 Rdsultat || 22/2020 11:44:
151120 1 50C - Dvers provisions lisge 3 Fdsuleat | |
151130 1 50C - Divers provisions lisge 3 Adsuleat | |
215180 1 LITBEC REOVISIOIE IS0 IE EES.

Export Content as C5V

It is possible to define the number of rows to be displayed in the preview window, but also to make a quick and
simple export of data in CSV format (useful for making quick comparisons of data)

In addition, by clicking "With Data Analyzer", you can see the details of each field from the Source. Useful for
understanding how Fuzible interprets data types.

Data Preview I Data Successfully Loaded. @ With Data Analyzer

Source Data Target Data To Insert To Update To Delete

DatzTable Name

id_comptecomptable | id_racime_comptzcomptable li_comptecomptable | id_type | li_type | SYNCHRO_TAG | DENAME
101000 Mame : id_racine_comptecomptable

10100000 L - - -

::?:‘:‘“ - Original Definition : LEFT{A.MAINACCOUNTID,1} as id_racine_comptecomptable

- SOL Type : INT

- Ling Type : Int64

- Allow Mull : False

- Is Unigue : False

- Primary Key : [id_comptecomptable]

| RESERVES CONTRACTUELLES [3 [Résuat[1 AXPROD | 5/19/2020 7:22:03 PM

Note that each sub-query, each cross-query appear in the contextual menu and the data from each of them, loaded
independently of the rest. In the example below, the Source query contains a sub-query, a UNION, and an cross-

query.

myTarget:select *

from sample_table_1 asa

inner join sample_table 2 asb ON a.id_sample = b.id_sample

inner join (select * from sample_table_3) assubQ on a.id_sample = subQ.FirstColumn
UNION

select * from sample_table_4

[--[11]]

select * from sample as crossQuery

Query Analyzer
> Source Infos »
> Target Infos »
> Query Details »
+ Sub-Query : subQ »
+ Union Query 1 3 Fields 3
+ Cross-Query (MySQL Raspberry) » Tables »
Execute Query Conditions
Group By
> Run this individual query Order By

QUERY ANALYZER - Query Details
Allows you to fully deconstruct a query to verify that it is compliant, and that it has no syntax errors.

For example, you can go through all the fields...

Query Analyzer

= Source Infos 3

= Target Infos 3

, . RAW : {AMAINACCOUNTID) as id ble
= Query Details 3 Fields 3 > id_comptecomptable [: o :[(A.MAI UUNTI[))i!SI _comptecompta!

= TABLE : MAINACCOUNT

+ Sub-Query : B 3 Tables 3 > id_racine_comptecomptable 3 - TABLE ALIAS : A

= INDEX : 0

Synchro Query Conditions > li_comptacomptabls »

» Transcoded for Target v Group By = id_type

= Validity check for Synchra Query Order By » = li_type

Additionzl Informations 3 | |
Fxerute Oery

All tables and understand their joins...

Query Analyzer

= Source Infos 3

= Target Infos b

= Query Details 3 Fields 3
+ Sub-Query : B 3 Tables 3

= NAME : SUBQUERY

Synchro Query G BE b > JOIN-TYPE : INNER JOIN o
Group By = JOIN-LINK :.A.REC[D = B.RECID Fields »
= Transcoded for Target b SUBCUERY : True
= Validity check for Synchro Query Order By 4 Tables 4
Additional Informations 3 Conditions
Execute Query
Group By 3
= Run this individual gquery ‘
Order By
it i\.fznrpd nneratinns ar Press 'F5' to show Nata
View sub-queries and try them...
Query Analyzer
= Source Infos 3
= Target Infos 3
= Query Details 3
+ Sub-Q B 3
synchro Query (s b
= Transcoded for Target 3 Tables G
= Validity check for Synchro Query Condtions
Group By 3
Execute Query
Order By

= Run this individual guary

Check syntax errors...
In this example, the query contains an unknown transformation: ERROR(id_sample)

MyTutorial:SELECT id_sample, SUBSTRING(li_sample, 0, 5) asli_sample, id_group asRenommedColumn, dt_random_date,
li_sample asli_test,

CONVERT(id_sample, VARCHAR) as convertid,

ERROR(id_sample) as ErrorDama

FROM SAMPLE.CSV

WHERE id_sample >= 1 Query Analyzer

> Source Infos 3
= Target Infos 3
> Query Details 3 Fields 3
Execute Query = 4
Conditions 3
= Run this individual query GuRlEY
) Order By
Scripting
Additional Informations 3
= Get full header from query and copy/pg—
DESCRIPTION : Unrecognized SQL Function. > ERROR : ERROR(id_sample) >

> Add a dynamic parameter
> Transformations 3

= Basic Query Builder

Advanced Query Scripting

= Add Cross-Connections Join

. > Create Dual Target

The syntax errors detection is especially useful for "non-SGBD" queries, which allows you, if the query fails, to
understand why it didn't work.

In the case of a query on a SGBD, the detection is essentially informative, as Fuzible does not know all the twisted
cases that a query may contain.

EXECUTE QUERY - Run this individual Query
You can only execute a specific query rather than the entire Job. By choosing this option, only the query on
which you are positioned will be executed.

In this mode, the "LOG" tab does not fill up and the graphical interface is "blocked" for the time of execution. Once
the processing is done, a LOG screen appears and shows the result.

SYNCHRO-QUERY - Transcoded for Target
When you have written a query for a synchro. job, you may want to test how well the Source query
transcoding is working on the Target. This menu lets you see the query as it will be performed in the Target.

Query Analyzer

= Source Infos 3

= Target Infos 3

= Query Details 3
+ Sub-Query : B 3

Synchro Query

= Transcoded for Target 3 e o e coom

FROM AX_dm_plancompmble

Real ¢
Will be determined at runtime. Try to load source data first.

= Validity check for Synchro Query

Fyerite (hiery

SYNCHRO-QUERY - Validity check for Synchro Query
This option simply checks the validity of the synchro. query.

SCRIPTING - Get Full Header Query and copy/paste it

It can be tedious to manually enter the entire header of an SQL table or file (if you want, for example, not to
do a SELECT * but a SELECT with the name of the fields). By clicking here, Fuzible will retrieve all the fields from the
Source and if it has joins, you can choose from which table/file/webservice... you want the header back:

mytargettable:select *

from samplel

Query Analyzer

> Source Infos »
> Target Infos »

> Query Details »

Execute Query

> Run this individual query

Scripting

> Get full header from query and copy/paste it » sample1

> Add a dynamic parameter

> Basic Query Builder

Advanced Query Scripting

> Add Cross-Connections Join

> Create Dual Target

Once the header is retrieved, the software copies the header in the clipboard, you are then asked to paste it in your
query:

mytargettable:select id_sample,li_sample,dt_random_date,nb_random_number,li_random_string,id_group,id_ssgroup
from samplel

SCRIPTING - Transformations

In case your Source connection is not a database, the Transformations menu reminds you of all the SQL syntax
available to manipulate the data. This is obviously also available during writing : the assistant makes suggestions
based on what you type.

(CASE field WHEN ‘valuel' THEN ‘value2' {...) ELSE 'value3’ END

COALESCE(field, 'replacementvalue')

;E;? SHS Fuzible Data Replicator, Synchronizer = . CHARINDEX(field, ‘expToFind)

i i i LENGTH(field)
File Configuration Tools Help

CONCAT(field1, field2,...)

CONVERT(field, SQL type)
GuizM [10] Demo Job 001 DISTINCT (ex : SELECT DISTINCT * FROM [...])

TOP (ex : SELECT TOP 100 * FROM)

Job Configuration Source : CSV File Target : SQLite Database Qud LIMIT (ex : SELECT * FROM myTable LIMIT 100)
Job Queries Sandbox . Avafieid)
SUM(field)
MyT - o o S MIN(field)
MyTutorial:SELECT id_sample, SUBSTRING(li_sample, 0, 5) as MAX(field)
li_sample as li_test, COUNT(field)
CONVE RT(id_Th GROUP BY (ex : SELECT id_client, li_client, SUM{nb_amount) FROM [...] GROUP BY id_dlient, li_client)
FROM SAMPLE. ISNULL{field, 'replacementValue’)
WHERE id_sam| Query Analyzer INKER J0mH
= Source Infos 3 +
LEFT JOIN
> Target Infos 3 .
RIGHT JOIN
> Query Details » .
J0IN
Execute Query " ouTER J0m
> Load Source Data (F5)

LPAD(field, paddedLength, ‘padstring’)

> Run this individual query . LTRIM(field)

Seripting . LOWER(field)

= Get full header from query and copy/paste it 3) ORDER BY (ex : SELECT * FROM [...] ORDER BY field ASC
> Add a dynamic parameter) RPAD({field, paddedLength, 'padString’)

> Transformations ») RTRIM(field)

> Basic Query Builder I REPLACE(field, 'ValueToReplace’, ReplacementValue’)

Advanced Query Scripting SUBSTRING(field, startindex, length)

> Add Cross-Connections Join) UPPER(field)
> Create Dual Target WHERE (ex : SELECT = FROM [...] WHERE field = 'value’)
. h AS (ex : SELECT id_client AS myClient [...])

UNION (ex : SELECT field FROM tablel UNION SELECT field FROM table2)

* (ex : SELECT * FROM [..])

SCRIPTING - Add a Dynamic Parameter

You can add a Dynamic Parameter to your query. For example, | want to make the "WHERE id_sample"
filter dynamic :

mytargettable:select id_sample,li_sample,dt_random_date,nb_random_number li_random_string,id_group,id_ssgroup
from samplel WHERE id_sample >

Query Analyzer

> Source Infos 3
> Target Infos 3
> Query Details 4
Execute Query

- Load Source Data (F5)

> Run this individual query

Scripting
> Get full header from query and copy/paste it 4

> Add a dynamic parameter

> Basic Query Builder

Advanced Query Scripting

> Add Cross-Connections Join

> Create Dual Target

After entering the desired value, Fuzible will add the dynamic setting in the query:

mytargettable:select id_sample,li_sample,dt_random_date,nb_random_number,li_random_string,id_group,id_ssgroup
from samplel WHERE id_sample > {71}

Query Analyzer

> Source Infos 3
> Target Infos 4
> Query Details 3
Execute Query

Load Source Data (F5)

> Run this individual query

Scripting
> Get full header from query and copy/paste it 3
> Dynamic Parameters 3 Insert {71} (Value=50)

> Basic Query Builder

Advanced Query Scripting

> Add Cross-Connections Join

> Create Dual Target

... then add the parameter in the “Job Parameters” menu :

Dynamic Parameters

N ::_ View Job With Replaced Values

If Dynamic Parameters have already been set, the menu will be as follows:

mytargettable:select id_sample,li_sample,dt_random_date,nb_random_number,li_random_string,id_group,id_ssgroup
from samplel WHERE id_sample > {21}

Query Analyzer

> Source Infos 3
> Target Infos 3
> Query Details 3
Execute Query

Load Source Data (F5)

> Run this individual query

Seripting
> Get full header from query and copy/paste it »
> Dynamic Parameters > Insert {71} (Value=50)

> Basic Query Bullder

Advanced Query Scripting

> Add Cross-Connections Join

> Create Dual Target

SCRIPTING - Basic Query Builder
A simple assistant to create a query. It is understood that this mode does not allow for advanced queries.

ADVANCED QUERY SCRIPTING - Add Cross-Connections Join
This is where you can open the menu for a cross-query.

ADVANCED QUERY SCRIPTING - Create Dual Target
This is where you can open the menu for a multi-target query.

Log Viewer tab

Depending on the level of LOG chosen in the "Job Configuration" tab, you will see more or less detail in the
Log Viewer.

What you see is systematically referred to log files that are produced by the software.
At the end of a Job, a message will appear on the screen indicating its status.
A round-up of debug possibilities:

- The Query Analyzer and the "Show Source data" screen (contextual query menu)

- The "SIMULATION" mode, which executes the Job without performing any operation in the Target, it merely
displays everything it will do there (see below)

- The general LOG: quite verbose, it can help you understand a problem during Job execution, you can also set
it up in "Detailed" to get as much information as possible.
Check out the files produced by the Job, you have 3:
1) The LOG file, which shows everything you see in the "LOG Viewer" tab
2) The "QUERIES" file that shows all the queries that have failed.
3) The "DEBUG" file that provides a higher level of information from any error.

Example of a successful execution:

&2 Lazy
File Configuration Tools Help
GUIZM [10] Demo Job 001 Create new Step

Job Configuration Source : CSV File Target : 5QLlite Database Queries

> LOG:

[15:19:48][INFI[PRG][LogTools.StartobLog] 19/01/2021 - JOB STARTED : Demo Job 001 (1,/0)
[15:19:48][INFI[SRC][MThread RepSyncTask_Source] T01 -> Getting Source Data (SAMPLE.CSV)
[15:19:48][INFI[TRG][MThread.RepSyncTask_Target] TO1 - Target A -> Replication (51 Rows) To MyTutorial
[15:19:48][INFI[TRG][SQLTools.InsertDatalnBDD] Insert data from dataset on MyTuterial(51)
[15:19:47][INFI[PRG][LogTools.EndJobLog] RUNNING TIME : 00:00:00 - ERRORS : 0 - WARNINGS : 0
[15:18:47][INFI[PRG][LogTools.EndJobLog] 19/01/2021 - JOB FINISHED (NO ERRORS) : Demo Job 001

STATUS : RanToCompletion

-> Destination : MyTutorial

-> Rows Source : 51

-> Rows Target : 0

-> Inserted : 51

-» Updated: 0

-> Deleted: 0

-» Processing Date : 19/01/2021 15:19:46

View Threads

[=] save Job @,‘u‘.::wt Job Simulation Mode @ Start Job

Example of a failed execution; THE LOG is displayed in bold:

£ —
File Configuration Tools Help

GUIZM [21] MongoDB -> CSV : Early Test

Job Configuration Source : MongoDB Database Target : CSV File Queries

> L0G:
[15:21:36][INF][PRG] [LogTools.StartJobLog] 19/01/2021 - JOB STARTED : MongoDB -> CSV : Early Test (1/0)
[15:21:36][INF] [SRC] [INIPr E) ations] E Pre-Job C d(s) in Source

[15:21:41][ERR][SRC][NOSQLTools.ExecuteCommand] Command drop failed: ns not found.(Command drop failed: ns not found.)

[15:21:41][INF][SRC][MThread.RepSyncTask_Source] TO1 -> Getting Source Data (fuziblebson)
[15:21:42][INF][TRG] [MThread.RepSyncTask Target] TO1 - Target A -> Replication (100 Rows) To mongomulti.csv

[15:21:42][INF][TRG][MThread.RepSyncTask_Target] TO1 - Target A -> Replication (100 Rows) To mongomulti_Data.CSV

[15:21:42][INF][PRG][LogTools.EndJobLog] RUNNING TIME : 00:00:05 - ERRORS : 1 - WARNINGS : 0

[15:21:42][INF][PRG] [LogTools.EndJobLog] 19/01/2021 - JOB FINISHED (WITH ERRORS) : MongoDB -> C5V : Early Test

X

STATUS : RanToCompletion

-> Destination : mongomulti.csv

-> Rows Source : 100

-> Rows Target : 0

-> Inserted : 100

-> Updated : 0

-> Deleted : 0

-=» Processing Date : 19/01,/2021 15:21:42

View Threads

@ Abort Job

Running a Job

Simulation Mode

@Sia|’: Job

Once the Job is set up, saved, and tested, you can execute it and interrupt it if necessary.

These buttons are at the bottom of the interface. Also, you will find that on the "Job Configuration" tab, you have a
little "Simulation Mode" button just above. This will write in the LOG any “write” operation that is going to be

executed on the Target, without performing it.

This LOG has the advantage of not actually executing the Job, so not to take any risks and possibly compromise the

Target.

In addition, this mode writes all SQL queries, which can be very useful in the case of replication of SGBD data to
SGBD: allows you to get all SQL code: "INSERT," "DELETE," "UPDATE" statements.

. Simulation Mode @ Start Job

Example of "Simulation" output (Job that copies data from a file to a database)

Brew2 3| BwraTsnew. 7xT 63| BIHELP_ENXML E3| Bl new 1 5cu\ZM,[1D],uuenes,zozmﬁawsz7som':‘

[[SIMULATTON MODE] WILL POST-WORK INPUT FILE(S) -RIEN : C:\Users\guizm\source\Workspaces\Fuzible\Fuzible\bin\x€4\Debug\FILES\SAMPLE .CSV
[SIMULATION MODE] WILL POST-WORR INPUT FILE(S) ON (S)FTP - RIEN : SAMPLE.CSV

[SIMULATION MODE] SELECT COUNT(*) FROM sglite_master WHERE type = 'table' AND tbl_name = 'MyTutorial';

[SIMULATION MODE] SELECT il.cid, il.name, il.name, il.type, '0' notnull®,
[SIMULATION MODE] SELECT tbl.cid, tbl.name, i
[SIMULATION MODE] SELECT il.name, il.type, 'O
[SIMULATION MODE] DELETE FROM "MyTutorial";
[SIMULATION MODE] SELECT COUNT(*) FROM "MyTutorial;
[SIMULATTON MODE]
[SIMULATTON MODE]

Li iliname, il.pk FROM sglite master AS m, pragma_table_info(m.name) AS il WHERE m.type='table' AND m.name = 'MyTutorial' AND pk =

from® |1 '_' 11 as name_constraint, 0, tbl."notnull”, il.seq, il.seq, il."table",

_ il."to" FROM sglite master AS m INNER JOIN pragma_foreign_key list ('}
. il."notnull®, il."notnull", il.type, '0', il.dflt _value, 'NG' as UnigueRey,

"NG' as IsKey FROM sqlite master AS m, pragma_table_info(m.name] AS il WHERE m.type

INSERT INTO "MyTutorial” ("id_sampls”,"li_sampls®,"RenommedColumn”,*1i_test") VALUES (50,'five-','000",'five-');INSERT INTO "MyTutorial® ("id_sampls"”,"li_sampls”,"RenommsdColumn”,"1i_tsst")
INSERT INTO "MyTutorial® ("id_sample",”li_sample”, "RenommedColumn","1i_test") VALUES (82,'sight','002",'sight');INSERT INTO "MyTutorial®™ ("id_sample","li_sample”, "RenommedColumn”,"li_test")

Also, if you check the associated LOG "Queries" file, you will get all the queries in plain sight, including INSERT. This

scenario is especially useful if you've installed the app locally, and you want to send data to a locally inaccessible
database.

You can only generate queries through the "simulation" mode, and then connect to the remote server to integrate
the data via INSERT code Fuzible produced.

"Service" Application

The software comes with a background service application: This service works in harmony with the “Client” application

(using SQL mode), as well as the Job Orchestrator.

The app automatically creates and purges the SQL table that is used for its operation. As a "console" application, its LOG is

written in the « SERVICE_YYYYMMDD_LOG.TXT » file.

The application keeps only one file, it systematically erases the one from the day before.

It retrieves the list of Jobs invoked (by the "Client" application or by the Planification) and executes them one after the other (it

can run several in parallel, this setting being managed in the main application, configuration menu)

Setting up the Windows Task Manager

Note: This setting can be done automatically by Fuzible's configuration menu. However, you may need to manually

edit/create it on somewhat tricky points, such as the execution account.

Madifier le déclencheur

Lancer latiche: | &lheure programmiée o
Paramétres
O Une fois Démarrer: |1Bf04/2018 [k | |07:00:00 < ‘ O Synch, fuseaux

horaires

@) Chaque jour
ﬁ}’]

O Chaque semaine

(D Propriétés de Replicator Service (Drdinateur local) >

Général Déclencheurs Actions Conditions Paramétres Historique

Spécifiez les conditions qui, avec 'élément déclencheur, déterminerant si la tiche doit s'exécuter, Elle ne
s'exécutera pas si l'une de ces conditions n'est pas wérifide,

Inactivité

[C] Démarrer la tiche si I'ordinateur est inactif pendant: 10 minutes

Vous devez spécifier I'action que cette tiche effectuera.
Action: Démarrer un programme =
Paramétres
Programme/script :

CA\Tools\FuzibleService.exe Parcourir...
Ajouter des arguments (facultatif) :

Commencer dans (facultatif) : _C!\Toc\s\

sl

Répéter tous les: Jjours 1 heure
(O Chagque rmois Arréter si I"ordinateur n'est plus inactif
Redémarrer si I"état inactif recommence
Alirnentation
Me démarrer la tdche que sil'ordinateur est relié au secteur
PEIRISES EREnEs Arréter si I'ordinateur passe en alimentation par batterie
[Report axirnal de la tiche {aléatoire) : 1 hewre [1 Sortir 'ardinateur du mode weille pour exécuter cette tiche
[Arréter toutes es tiches & Fssue de Iz durde de répétition [Me démarrer que si la connexion réseau suivante est disponible :
Arréter la tiche si elle s'exécute plus de Wimporte quelle connexion
[Expiration : 19/05/2021 2042:21 :
Activée
Modifier une action X (B Prapriétés de Replicator Service (Ordinateur local) X

Général Déclencheurs Actions Conditions Paramétres Historique

Spécifiez d'autres pararnétres influant sur le compaortement de la tiche,

Autoriser 'exécution de la tdche i la demande

Exécuter la tdche dés que possible si un démarrage planifié est ranqué

[Silatiche échaue, recarnmencer tous les : 1 minw
3

Arréter la tiche si elle sexécute plus de:

Silatiche en cours ne se termine pas sur dernande, farcer son arrét

[Siaucune nouvelle exécution programmée, supprimer la tiche aprés 30jours

Sila tiche sexécute déja, la régle suivante sapplique @

Exécuter une nouvelle instance en paral

With each start, the app checks the stack of requested Jobs to run and:

- Checks if the number of Jobs being processed does not exceed the max. value from the settings.

- Sorts out the list of Jobs to be launched according to the priority assigned to it (between 1 and 3)

- Executes the requested Job(s)

- Follows the progress of the job and get its output ; updates the SQL table accordingly so that the user, from the “Client”
application, can see the progress (by clicking "Job Status")

The service must be installed on the same machine and path as the Fuzible application.

Setting up an external job (excluding Fuzible) with the "Service" app

The idea of this option allows you to take advantage of the "client/service" system to perform any other

task.

This is quite feasible, and simply requires you to manually enter data into the SQL table "client_jobs" (which is used
by the "Service" application and which is located on its SQL instance) the external Job information that one wishes to
be able to trigger (basically, the execution of a BAT file performing certain operations is well-advised)

Field Description

User_jobs Use any username (for example, the person who creates this job)
Job_id A Job number, for example "001"

Job_name Job name: this is what will be displayed to the user
Job_description Description: A few more words to describe the Job

Job_params Default Dynamic Parameters (optional)

Job_queries

You can maybe write a more in-depth description of the Job ?

Job_haschildren

0

Job_password

The password that allows the user to launch the Job. Fuzible passwords are
encrypted, but for those external commands, you have to enter it "as it" in the
table

Job_priority

Execution priority (1,2,3)

Application_name

The name of the app to be launched (ex : c:\Tools\MyFile.bat)

Job_category

Job categorization to optimize user view

For the user, this is the representation of an external Job in the list of Jobs that will be proposed to him in the

“Client” application:

[DATABASE -~ FILE]
ReplicatorApp (SVCSCO)

DWH -= FICHIER : Extraction du Grand Livre Comptable
MOSAIC - BLEUSHARE : Extraction du fichier Acomptes
MOSAIC -» RHPI : Préparation aux modifications de contrats + LOG

[DATABASE -» WEBSERVICE]
ReplicatorApp (SVCS5CO)
MOSAIC-PP -= RHPI: Webservice Primes V2

MOSAIC -> RHPI : Webservice Modifier Contrat V2

MOSAIC -» RHPI : Webservices Personnel/Contrat/RIC V2

[EXTERNAL BATCH]
omnis_comete_cloture (CMD)
Clature Comete
[FILE -= DATABASE]
ReplicatorApp (SVCSCO)

BLEUSHARE -> BLEU : Vhicules : Import Factures Leaseplan (Carburant)

BLEUSHARE -= BLEU : Vehicules : Import Factur

EIFIISHARF -» PANAMA : Imnart RUBPAI RhP

Leaseplan
BLEUSHARE -> BLEU : Vehicules : Import Factures Total

And here is the database representation:

user_jobs job_id job_name

1 om Cliture Comete

2 SWCSCO [14] BLEUSHARE -» BLEU : Wéhicules : lmp.
3 SWCSCO [(15] BLEUSHARE - BLEU : Véhicules : lmp..
4 SYCSCO [16] BLEUSHARE - BLEU : Vihicules : Imp..
5 SWOSCO (53] DWH - FICHIER - Extraction du Grand

£ SYCSCO [(B2] MOSAIC > BLEUSHARE : Extiactiond..
7 GWOSCO (B3] BLEUSHARE - PANAMA - Import RUB
8 SWCSCO (5] BLEUSHARE -> PANAMA : Import des...

9 sWCsco (72
10 SYCsco (78]
1 swCsco [8l]
12 SWCsCO (e

MOSAIC > RHFI : Webservice Madifier
MOSAIC > RHPI - Webservices Person

MOSAICPP > RHPI : Wehservice Prim

MOSAIC -» RHPI : Préparation aux maodi...

job_descriptian job_params iob_aueries job_haschildren job_password job_priofity application_narne iob_categary

Préparation alacl.. 202001 MULL a wolf 1 c:4Toolshomnis_comete_cloture. bat Extenal Batch
Traiterment des fic. 180320 IMPORT_LEASEPLAN_C. 1} SadighBINkuD 1 Replicatorépp.exe File -» Database
Traitement des fic. 202004 IMPORT_LEASEFPLAM:s... a w9iEnSoeZly. . 1 Replicatordpp.exe File -» Database
Traitement des fic. 20200331 IMPORT_TOTAL_SERIS... O HCKpDu=SFM... 1 Replicatortpp.exe File -» Database
Extraction du Gra. =YY MM ¢ v_grand_livre_comptable 1} yMATIDIKO +u 1 Replicatorépp.exe Database - File

Figalise 'extractio... 20200515 IMT_acomptes. C5V selec... 0 BTPERHhtgE-.. 1 Rieplicatortpp.exe Database -> File

Import de 0D de 120520_130125_ RUBPRAI_RHPI_import: sel. 1} PAEz(GzkVD 1 Replicatorspp. exe File -» Database

Impart des heures 20208202005, COMETE_heures:select™.. 0 $ainbSipvugdz.. 1 Replicatordpp.exe File -» Database
Exgcution des ‘We. id_matricule webService=dossier.contr... 1 SEMOBGH0AG.. 1 Replicatortpp.exe Database -» Webservice
Exécution des ‘e, madifierric:id_matr webService=dossier {72}, 1} HMo?kaZtykn, 1 Replicatorspp. exe Database -» Webservice
Extractions & partir, 01_COMTRAT_MODIFIE a O7JbpuFDrblal 1 Replicatordpp.exe Databasze -> File
Exécution du'we. program=5PS010RB:SEL. 1} prxBBF4c<ER 1 Replicatorépp.exe Database -» Webservice

"Client" Application

A lightweight client is provided and allows you to run jobs remotely from his own workstation.
The value of making the ability to trigger a Job by an user is crucial, for example:
- Let users choose the date/time to launch a Job

- Produce reports on the fly

Pre-requisite on client workstation:

» Windows OS (7+)
» .NET Core 3.1

» INI file "CLIENTAPP. INI" (available in Fuzible installation path)

Warning: If you change the Client/Service connection string in the app's general settings, you'll need to provide the new
"CLIENTAPP. INI" to users because this file contains the connection settings!

Here’s a diagram of how « Client » App works :

USER PC
Fuzible Light App DISTANT DATABASE
Jobs List B< Gets Lix of Availablg Jobs
< Last Job Ifyocation|Date
- Available Jobs for Light A
< Log & Jép Statys v - Job Status gnt App
- Execution Planification
¢ - - Flood Control
Sellings \ Invoke a Job
- Immediate or delayed Invoke Flood Control |
- Job Dynamic Parameters /
A
APPLICATION SERVER | Y

Fuzible Service

- Reads the Execution Queue

- Executes Jobs (from Light App or Planification)
- Writes Status Log

It communicates with the Service through a database that is configured from the Main Application.

The light client app uses a "stack" system. When choosing a job to execute, the app writes an SQL row in the "Service" app
database instance. The settings of this connection are present in "CLIENTAPP. INI" and are encrypted for security reasons.

The “Client” software does not execute the Job. It loads it into a stack; it's the "Service" app provided that controls and launches
the jobs that are invoked.

A Job must be configured beforehand as visible in the "Client" application:

) oy =

File Configuration Tools Help

GUIZM [9] Accounting Data To Datawarehouse v Prev. Step 1 > AccountingDataTc v Next Step

Source : SQLite Database Target : XML File Queries Log Viewer

Job Decription
Rename Job Change Password

Create New Job
Delete Job Planification

Job Type Data Replication v

Dynamic Parameters

View Job With Replaced Values

LOG Level Errors + Informations v Log in SQL

Send Mail When Finished

Visible in Client App . Bypass Post-Commands (Source/Target) if Job has Errors . Abort Next Steps on Errors

Command Line Fuzible.exe "GUIZM" "[9]" "E04wYyY8XJ6QVVi6McMh/g=="""

By opening the "Client"app, you can choose one of the Jobs available from the list. Its password will be required; The
person who creates the Job will have had the presence of mind to provide it to the person (or persons) granted to launch the
Job.

The list of available Jobs:

£ Fuzible Remote Job Launcher = O X

Fuzible Remote Job Launcher

List of Jobs : v Request
[DATABASE -> DATABASE]
Dynamic Paramete Fuzible (GUIZM)
MySQL -> Postgres : Demo Synchro
[DATABASE -> FILE]
Informations Fuzible (GUIZM)

Scheduled Executii

Accounting Data To Datawarehouse
[FILE -> FILE]
Fuzible (GUIZM)
CSV -> XLS : This is a sample Job
[MAILBOX -> FILE]
Fuzible (GUIZM)
WS -> SQLITE : Démo
[MAILBOX -> MAILBOX]
Fuzible (GUIZM)

Gmail-> Hotmail : Transfert Mail

GT/Build : 191609020125 - Connected To [DB_SQLITE] View Job Queries Check Job Status

The person handling the client application can change the dynamic parameters of the selected Job: very useful to

produce, for example, a period-specific Reporting, setting a filename to import, etc. everything is possible, it all depends on
how the Job is configured!

Dynamic Parameters | = =r 20 ' YYVIaMM<IM

Scheduled Execution | 20/05/2020 55|15 H

It is also possible to delay the launch of the Job, by default, by clicking "Request", the Job will be stripped as quickly as possible
by the "Service" application, but it can also be set to a particular date/time (for example to launch "heavy" tasks in the middle of
the night without having to wake up in the middle of the night to trigger the launch)

"View Queries" allows you to see the queries associated with the Job, and their translation with dynamic settings. Rather
reserved for users with some knowledge of SQL!

After clicking "Request", the software shows the position in the stack:

2

Fuzible Remote Job Launcher

List of Jobs : CSV -> XLS : This is a sample Job L Request
Dynamic Parameters SampleDynamicParant; %DD/%MM/%YYYY
Scheduled Execution : [20/12/2020 E H

[INF] Job Stacked in Position 1

OK

GT/Build : 19160902-0125 - Connected To [DB_SQLITE] View Job Queries Check Job Status

The user can follow the status by clicking on "Check Job Status."

The Job has been invoked but not yet handled by the "Service" application:

Fuzible Remote Job Launcher

List of Jobs : CSV -> XLS: This is a sample Job v Request

Dynamic Parameters SampleDynamicParant; %DD/%MM/%YYYY

Scheduled Execution : [20/12/2020 @ H

Last Execution Status :
> Request Date : 2020-12-20 22:37:56
> User : LAPTOP-LSTODHOU\guizm

> Status : REQUESTED

> Stack Time : 2020-12-20 22:37:56

> Start Time :

> End Time :

> Message :

GT/Build : 19160902-0125 - Connected To [DB_SQLITE] View Job Queries Check Job Status

Job executed and completed:

Fuzible Remote Job Launcher

List of Jobs : CSV -> XLS : This is a sample Job v Request
p q

Dynamic Parameters SampleDynamicParan; %DD/%MM/% YYYY

Scheduled Execution: | 20/12/2020 fis) H

Last Execution Status :

> Request Date : 2020-12-20 22:37:56

> User : LAPTOP-LSTODHOU\guizm

> Status : FINISHED
> Stack Time : 2020-12-20 22:37:56
> Start Time : 2020-12-20 22
> End Time : 2020-12-20 22:
> Message :

[INF] 20/12/2020 - JOB STARTED : CSV -> XLS : This is a sample Job (1/0)

[INF] WITH DYNAMIC PARAMETERS : SampleDynamicParam;3%DD/%MM/%YYYY

[INF] TO1 -> Getting Source Data (SAMPLE.CSV)

[INF] TO1 - Target A -> Replication (100 Rows) To SAMPLE_OUTPUT_SELECTALLXLSX
[INF] TO1 -> Getting Source Data (SAMPLE.CSV)

[INF] TO1 - Target A -> Replication (100 Rows) To SAMPLE_OUTPUT_SELECTBYFIELD.XLSX
[INF] TO1 -> Getting Source Data (SAMPLE.CSV)

[INF] Distinct Operation on Source Data : Removed 95 Rows

:02

GT/Build : 19160902-0125 - Connected To [DB_SQLITE] View Job Queries Check Job Status

Note: If the user clicks "Check Job Status" before requesting the execution, he will see the LOG of the last run to date, if it has not
yet been purged (the retention time is defined in the general parameters of the software)

Fuzible SQL: Glossary

Supported functions

Here is a list of the SQL functions supported by Fuzible's engine for querying a non-SQL Source. For use,

internet is your friend (SQL standard). The Query Assistant will also show you how to use them.

TRANSFORMATION
SUBSTRING Extraire un morceau de chaine dans une chaine
CONCAT Concaténer des champs ou des caractéres
CASE field WHEN ... THEN ... ELSE ... END Piloter une valeur en fonction d’une autre
CONVERT Force la conversion d’un type de données pour un autre
LTRIM, RTRIM Effacement des espaces avant/aprés une chaine
ISNULL, COALESCE Remplacer une valeur vide par autre chose
LPAD, RPAD Compléter une valeur par une chaine a droite ou gauche
LENGTH Longueur d’une chaine
CHARINDEX Position d’une chaine dans une chaine
LOWER, UPPER Mettre une valeur en majuscules ou minuscules
REPLACE Remplacer une valeur par une autre
ANONYMIZE Randomizes values to simulate an « anonymization » feature
AGGREGATION
SUM Somme d’un ensemble
MAX, MIN Maximum ou minimum d’un ensemble
AVG Moyenne d’un ensemble
COUNT Quantité d’un ensemble

FONCTIONS ESSENTIELLES

SELECT DISTINCT

Supprimer les doublons d’un résultat

SELECT TABLE x Propre au SQL de Replicator : permet de définir la table sur laguelle on aliase les champs
(rappel : un webservice peut par exemple renvoyer plusieurs tables)

SELECT TABLE x ONLY Propre au SQL de Replicator : permet de ne renvoyer qu’une table choisie dans un ensemble
(cas des webservices par exemple)

LIMIT, TOP Limite les résultats retournés

Ex : SELECT TOP 100 * FROM monfichier
Ex 2 : SELECT * FROM monfichier.csv LIMIT 100

JOIN (LEFT, OUTER, INNER, RIGHT)

Jointures entre sources

WHERE

Filtres (= <> I=IN NOT IN) ainsi que les « SELECT » imbriqués
Ex : WHERE LENGTH(li_test) >0
Ex 2 : WHERE li_test in (SELECT li_data FROM matable)

ORDER BY Organisation des résultats
GROUP BY Regroupements d’aggrégations
UNION Merge de plusieurs résultats aux schémas identiques
FONCTIONS AVANCEES
Math. Operations in functions Additions et soustractions aux fonctions traitant de nombres entiers (charindex, length,
substring)

Ex : SELECT SUBSTRING(li_test, CHARINDEX(li_test, “-“) + 1, 10) FROM monfichier.csv

Sub-queries Ex : SELECT * FROM (select * FROM monfichier.csv) as subQ
Ex 2 : SELECT * FROM monfichier.csv WHERE id_test NOT IN (SELECT id FROM
monautrefichier.csv)
Unsupported
HAVING Filtrer des fonctions d’aggrégation
«null » Le « NULL » au sens d’une base de données n’est pas compris

Ex : CASE WHEN x IS NULL THEN doit étre saisi ainsi :
CASE WHEN x = “ THEN

« GETDATE » or « CURRENT_TIMESTAMP »

De maniere plus générale, la saisie dynamique du datetime actuel. En revanche vous pouvez
utiliser les parameétres dynamiques du Job pour contourner cette limitation
Ex : SELECT * FROM monfichier WHERE annee > {%YYYY}

Fields as sub-queries

Ex : SELECT (select id FROM monfichier.csv) as id FROM monautrefichier.csv

Math. operations on aggregated data

Ex : SELECT COUNT(*) + 10 FROM monfichier

